scppNJW
PURPOSE
Clustering of projected data using Ng, Jordan and Weiss (2002) normalised spectral clustering algorithm
SYNOPSIS
function idx = scppNJW(K,v,X,sigma,weights, beta,delta)
DESCRIPTION
Clustering of projected data using Ng, Jordan and Weiss (2002) normalised spectral clustering algorithm IDX = SCPPNJW(K,V,X,WEIGHTS,SIGMA,PARAMS) Inputs: (K): number of clusters (V): Matrix defining projection subspace (X): Dataset (potentially micro-cluster centers) (WEIGHTS): Observations per microcluster (empty for no micro-clustering) (SIGMA): scaling parameter for Gaussian kernel (BETA,DELTA): parameters of similarity transformation function: if empty similarity between projections is based on Euclidean distance Output: (IDX): Cluster assignment vector \in {1,...,K}
CROSS-REFERENCE INFORMATION
This function calls:- sim_transform Transformation of points to compute pairwise similarities of projected data Eqs.(17)-(18)
- schp Class implementing a linear projection subspace of arbitrary dimensions estimated through SCPP
- scpp Spectral Clustering Projection Pursuit (SCPP) (divisive clustering is implemented in scppdc.m)
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005