mdh
PURPOSE
Minimum Density Hyperplane
SYNOPSIS
function [idx,sol] = mdh(X, varargin)
DESCRIPTION
Minimum Density Hyperplane [IDX,SOL] = MDH(X, VARARGIN) [IDX,SOL] = MDH(X) bi-partitions the points in the N-by-D data matrix X with the hyperplane that minimises the density on a hyperplane criterion (computed from one-dimensional projections of the data). MDH returns a vector IDX containing the binary cluster assignment and a Minimum Density Hyperplane (mdhp) object SOL. (If S initial projection vectors are specified S nchp hyperplanes are returned: see v0 option) [IDX,SOL] = MDH(X, 'PARAM1',val1, 'PARAM2',val2, ...) specifies optional parameters in the form of name/value pairs. OPTIONAL PARAMETERS: 'v0' - D-by-S matrix of S initial projection vectors (default: v0 = pca(X,'NumComponents',1) : First principal component of X) 'bandwidth' - Bandwidth parameter (default: H = MULT * N^(-0.2) STD(X*PC1), where PC1 is the 1st principal component) 'alphamin' - The minimum ALPHA over which MDHs are sought: [mean(X*V) - ALPHA*std(X*V), mean(X*V) + ALPHA*std(X*V)]. ALPHA starts from (alphamin) and increases by 0.1 every (maxit) iterations until (alphamax) is reached. (default: 0) 'alphamax' - The maximum ALPHA over which MDHs are sought is [mean(X*V) - ALPHA*std(X*V), mean(X*V) + ALPHA*std(X*V)]. ALPHA starts from (alphamin) and increases by 0.1 every (maxit) iterations until (alphamax) is reached. (default: 1) 'minsize' - Minimum cluster size (integer) (default minsize = 1) 'maxit' - Number of BFGS iterations to perform for each value of alpha (default: 50) 'ftol' - Stopping criterion for change in objective function value over consecutive iterations (default: 1.e-5) 'verb' - Verbosity. Values greater than 0 enable visualisation during execution (default: 0) 'labels' - true cluster assignment. Enables the computation of performance over successive iterations and a better visualisation of how clusters are split 'colours' - Matrix containing colour specification for observations in different clusters Number of rows must be equal to the number of true clusters (if 'labels' has been specified) or equal to 2. Reference: N.G. Pavlidis, D.P. Hofmeyr and S.K. Tasoulis. Minimum density hyperplanes. Journal of Machine Learning Research, 17(156):1-33, 2016. http://jmlr.org/papers/v17/15-307.html.
CROSS-REFERENCE INFORMATION
This function calls:- ifelse Shorthand for ternary operator: if-then-else
- myparser Function used to parse optional arguments in form of Name,Value pairs for a number of OPC algorithms
- pcacomp Returns the principal components of (X) specified in vector (index)
- mdpp Minimum Density Projection Pursuit (MDPP) algorithm
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005