ldakmeans
PURPOSE
LDA-K-means algorithm
SYNOPSIS
function [idx,U,fval,C,iter] = ldakmeans(X,K,varargin)
DESCRIPTION
LDA-K-means algorithm [IDX,U,FVAL,C,ITER] = LDAKMEANS(X,K,VARARGIN) [IDX,U,FVAL,C,ITER] = ldaKmeans(X,K) produces a flat partitioning of the N-by-D data matrix (X) into (K) clusters. The algorithm iteratively performs Linear Discriminant Analysis and K-means clustering. [IDX,U,FVAL,C,FLAG] = ldaKmeans(X,K) returns the cluster assignment, (IDX); the projection matrix (U) used to perform dimensionality reduction; the value of the projection index (FVAL); the cluster centroids (C); and finally the iteration at which the algorithm terminated, (ITER). If LDAKMEANS fails to converge ITER=0 [IDX,U,FVAL,C,ITER] = ldaKmeans(X, K, 'PARAM1',val1, 'PARAM2',val2, ...) specifies optional parameters in the form of Name,Value pairs. These are only used for visualisation 'maxit' - Number of iterations to perform (default: 50) 'ftol' - Tolerance level (default: 1.e-5) 'verb' - Verbosity. Values greater than 0 enable visualisation during execution Enabling this option slows down the algorithm considerably (default: 0) 'labels' - true cluster labels. Specifying these enables the computation of performance over successive iterations and a better visualisation of how clusters are split 'colours' - Matrix containing colour specification for observations in each of the (K) clusters Reference: C. Ding and T. Li. Adaptive dimension reduction using discriminant analysis and k-means clustering. Proceedings of the 24th International Conference on Machine Learning, pages 521-528, 2007.
CROSS-REFERENCE INFORMATION
This function calls:- cluster_performance Returns structure containing: Purity, Adjusted Rand Index, Normalised Mutual Information and V-measure
- isOctave Determines whether the environment is GNU Octave (returns TRUE) or MATLAB (returns FALSE)
- mycrosstab Cross tabulation table for vectors X,Y
- myparser Function used to parse optional arguments in form of Name,Value pairs for a number of OPC algorithms
- palette Determines colours used for visualisation
- pcacomp Returns the principal components of (X) specified in vector (index)
- lda2m Interface to ldakmeans that allows it to be used as generic projection pursuit function to perform divisive clustering
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005