drsc
PURPOSE
Dimensionality Reduction for Spectral Clustering
SYNOPSIS
function [idx,W,fval,sumD,iter] = drsc(X, K, sigma, varargin)
DESCRIPTION
Dimensionality Reduction for Spectral Clustering [IDX,W,FVAL,SUMD,ITER] = DRSC(X, K, SIGMA, VARARGIN) [IDX, W, FVAL, SUMD, ITER] = DRSC(X, K, SIGMA) produces a clustering of the N-by-D data matrix (X) into (K) clusters, by identifying the optimal (K-1)-dimensional linear subspace to project the data. (SIGMA) is the bandwidth parameter for the Gaussian kernel used to estimate the kernel matrix. [IDX, W, FVAL, SUMD, ITER] = DRSC(X, K, SIGMA) returns the cluster assignment, (IDX); the projection matrix (W); a vector of values of the projection index at each iteration (FVAL); the sum of squared distances to the cluster centres in the optimal linear subspace, (SUMD); and finally the iteration at which the algorithm terminated, (ITER). If DRSC fails to converge ITER=0 [IDX, W, FVAL ,SUMD, ITER] = DRSC(X, K, S, 'PARAM1',val1, 'PARAM2',val2, ...) specifies optional parameters in the form of Name,Value pairs. 'v0' - D-by-Q matrix of initial projection vectors. Q determines dimensionality of projection subspace (default: (K-1) first principal components) 'maxit' - Number of DRSC iterations (default: 50) 'maxitdim' - Number of gradient descent iterations for each dimension (default: 50) 'ftol' - Stopping criterion for change in objective function value over consecutive iterations (default: 1.e-4, suggested in Niu et al. AISTATS 2011) 'verb' - Verbosity. Values greater than 0 enables progress monitoring during execution (default: 0) Reference: D. Niu, J.G. Dy and M.I. Jordan. Dimensionality Reduction for Spectral Clustering. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, volume 15 of JMLR W&CP, pages 552-560, 2011.
CROSS-REFERENCE INFORMATION
This function calls:- drsc_linesearch Line search subroutine to determine stepsize for gradient ascent performed by DRSC
- f_df_drsc Function value and derivative with respect to last projection vector (column) of W
- gram_schmidt Gram-Schmidt orthonormalisation of vector (V) with respect to columns of (W)
- myparser Function used to parse optional arguments in form of Name,Value pairs for a number of OPC algorithms
- pcacomp Returns the principal components of (X) specified in vector (index)
- spclust Spectral Clustering algorithm by Ng, Jordan and West (NIPS 2001)
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005