f_df_sc
PURPOSE
Function value and derivative of second smallest eigenvalue of normalised Laplacian
SYNOPSIS
function [f, Df] = f_df_sc(v,X, pars)
DESCRIPTION
Function value and derivative of second smallest eigenvalue of normalised Laplacian [F,DF] = F_DF_SC(V, X, PARS) Inputs: (V): Projection vector (X): N-by-D Data matrix (PARS): parameter struct containing (sigma) Scaling parameter for Gaussian kernel (minsize): minimum cluster size (beta) (delta): parameters for similarity transformation Output: (F): Second smallest eigenvalue of Normalised Laplacian (DF): derivative of (f) w.r.t. projection matrix (v)
CROSS-REFERENCE INFORMATION
This function calls:- dP_dv Derivative of transformed data projections along projection vector V
- sim_transform Transformation of points to compute pairwise similarities of projected data Eqs.(17)-(18)
- scpp Spectral Clustering Projection Pursuit (SCPP) (divisive clustering is implemented in scppdc.m)
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005