depddp
PURPOSE
density-enhanced Principal Direction Divisive Partitioning algorithm
SYNOPSIS
function [idx,t] = depddp(X, K, varargin)
DESCRIPTION
density-enhanced Principal Direction Divisive Partitioning algorithm [IDX,T] = DEPDDP(X, VARARGIN) [IDX, T] = DEPDDP(X, K) produces a divisive hierarchical clustering of the N-by-D data matrix (X) into (K) clusters. This algorithm uses a hierarchy of binary partitions each splitting the observations by first projecting onto the first principal component and then identifying the lowest local minimum of the 1D KDE constructed from the projected data. [IDX,T] = dePDDP(X,K) returns the cluster assignment, (IDX), and the binary tree (T) containing the cluster hierarchy. If K==[] the number of clusters is estimated [IDX, T] = dePDDP(X, K, 'PARAM1',val1, 'PARAM2',val2, ...) specifies optional parameters in the form of Name,Value pairs. 'bandwidth' - Bandwidth parameter Function Handle: bandwidth(X,pars) returns bandwidth (positive scalar) (default: bandwidth =0.9* std(projections) * N^(-0.2)) 'split_index' - Criterion determining which cluster to split next (only relevant if K is specified) Function Handle: index = split_index(v, X, pars) (v: projection vector, X:data matrix, pars: parameters structure) Cluster with MAXIMUM INDEX is split at each step of the algorithm Two standard choices of split index can be enabled by setting 'split_index' to one of the strings below: + 'size': Split largest cluster + 'fval': Split cluster whose local minimum on the 1D KDE is the lowest (default: split_index = 'fval') 'minsize' - Minimum cluster size (integer) (default minsize = 1) 'labels' - true cluster labels. Only used for performance assessment. Reference: S.K. Tasoulis, D.K. Tasoulis and V.P. Plagianakos. Enhancing principal direction divisive clustering. Pattern Recognition, 43(10):3391-3411, 2010.
CROSS-REFERENCE INFORMATION
This function calls:- depddppp Projection Pursuit function for dePDDP algorithm
- gpp Generic Projection Pursuit
- gsep Generic binary cluster separator class
- myparser Function used to parse optional arguments in form of Name,Value pairs for a number of OPC algorithms
- pcacomp Returns the principal components of (X) specified in vector (index)
- tree2clusters Assigns cluster labels from a cluster hierarchy (ctree object)
- ctree Class implementing cluster hierarchy in tree data structure
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005