mcdc
PURPOSE
Maximum Clusterability Divisive Clustering
SYNOPSIS
function [idx,t] = mcdc(X, K, varargin)
DESCRIPTION
Maximum Clusterability Divisive Clustering [IDX,T] = MCDC(X, K, VARARGIN) [IDX, T] = MCDC(X, K) produces a divisive hierarchical clustering of the N-by-D data matrix X into (a maximum of) K clusters. This algorithm uses a hierarchy of binary partitions each splitting the observations with the hyperplane with maximum variance ratio clusterability. The algorithm can return fewer clusters if no valid hyperplane separators are found. [IDX,T] = MCDC(X, K) returns the cluster assignment, (IDX), and the binary tree (T) containing the cluster hierarchy [IDX, T] = MCDC(X, K, 'PARAM1',val1, 'PARAM2',val2, ...) specifies optional parameters in the form of Name,Value pairs. 'v0' - Function handle. v0(X) returns D-by-S matrix of initial projection vectors (default: Vector connecting centroids from 2-means) 'split_index' - Criterion determining which cluster to split Function Handle: index = split_index(v, X, pars) (v: projection vector, X:data matrix, pars: parameters structure) Cluster with MAXIMUM INDEX is split at each step of the algorithm Two standard choices of split index can be enabled by setting 'split_index' to one of the strings below: + 'fval': Split cluster whose hyperplane achieves the lowest density integral + 'size': Split largest cluster (default: split_index = 'mc_spindex' as recommended in Hofmeyr and Pavlidis (2015)) 'minsize' - Minimum cluster size (integer) (default minsize = 1) 'maxit' - Number of BFGS iterations to perform for each value of alpha (default: 50) 'ftol' - Stopping criterion for change in objective function value over consecutive iterations (default: 1.e-7) 'verb' - Verbosity. Values greater than 0 enable visualisation during execution Enabling this option slows down the algorithm considerably (default: 0) 'labels' - true cluster labels. Specifying these enables the computation of performance over successive iterations and a better visualisation of how clusters are split 'colours' - Matrix containing colour specification for observations in different clusters Number of rows must be equal to the number of true clusters (if 'labels' has been specified) or equal to 2. Reference: D.P. Hofmeyr and N.G. Pavlidis. Maximum clusterability divisive clustering. IEEE Symposium Series on Computational Intelligence, pages 780-786, 2015.
CROSS-REFERENCE INFORMATION
This function calls:- ifelse Shorthand for ternary operator: if-then-else
- myparser Function used to parse optional arguments in form of Name,Value pairs for a number of OPC algorithms
- palette Determines colours used for visualisation
- tree2clusters Assigns cluster labels from a cluster hierarchy (ctree object)
- ctree Class implementing cluster hierarchy in tree data structure
- mc_spindex Default split_index used to select which cluster MCDC partitions at each iteration
- mc_v0 Default projection vector for maximum clusterability projection pursuit
- mcpp Maximum Clusterability Projection Pursuit (MCPP) algorithm
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005