pcacomp
PURPOSE
Returns the principal components of (X) specified in vector (index)
SYNOPSIS
function [coeff,score,latent] = pcacomp(X,index)
DESCRIPTION
Returns the principal components of (X) specified in vector (index) [COEFF,SCORE,LATENT] = PCACOMP(X,INDEX) Inputs: (X): Data matrix (INDEX): Vector containing indices of principal component vectors required Output: (COEFF): [pca(X,'NumComponents',index(1)), pca(X,'NumComponents',index(2)), ... ] (SCORE): Representation of X in the principal component space (LATENT): Eigenvalues of COV(X'*X)
CROSS-REFERENCE INFORMATION
This function calls:- depddp density-enhanced Principal Direction Divisive Partitioning algorithm
- drsc Dimensionality Reduction for Spectral Clustering
- ldakmeans LDA-K-means algorithm
- mddc Minimum Density Divisive Clustering
- ncutdc Minimum Normalised Cut Divisive Clustering
- bisKmeansPP Projection pursuit function template to implement Bisecting K-Means
- depddppp Projection Pursuit function for dePDDP algorithm
- gsep Generic binary cluster separator class
- hp Class implementing generic hyperplane interface
- pddppp Projection Pursuit function for PDDP algorithm
- mdh Minimum Density Hyperplane
- mdhp MDHP implements Minimum Density Hyperplane (inherits from HP class)
- mdpp Minimum Density Projection Pursuit (MDPP) algorithm
- nchp Minimum Normalised Cut Hyperplane (inherits from HP class)
- ncut_sigma Default scaling parameter employed by Gaussian kernel in minimum normalised cut projection pursuit
- ncuth Minimum Normalised Cut Hyperplane
- ncutpp Minimum normalised cut projection pursuit
- schp Class implementing a linear projection subspace of arbitrary dimensions estimated through SCPP
- scpp Spectral Clustering Projection Pursuit (SCPP) (divisive clustering is implemented in scppdc.m)
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005