mch
PURPOSE
Maximum Clusterability Hyperplane
SYNOPSIS
function [idx,sol] = mch(X, varargin)
DESCRIPTION
Maximum Clusterability Hyperplane [IDX,SOL] = MCH(X, VARARGIN) [IDX,SOL] = MCH(X) bi-partitions the points in the N-by-D data matrix (X) with the hyperplane that maximises the Variance Ratio clusterability criterion. MCH returns a vector IDX containing the binary cluster assignment and a Maximum Clusterability Hyperplane (mchp) object SOL. (If S initial projection vectors are specified S maximum clusterability hyperplanes are returned: see 'v0') SOL = MCH(X, 'PARAM1',val1, 'PARAM2',val2, ...) specifies optional parameters in the form of name/value pairs. OPTIONAL PARAMETERS: 'v0' - D-by-S matrix of S initial projection vectors (default: Vector connecting centroids of 2-means clustering) 'minsize' - Minimum cluster size (integer) (default minsize = 1) 'maxit' - Number of BFGS iterations to perform for each value of alpha (default: 50) 'ftol' - Stopping criterion for change in objective function value over consecutive iterations (default: 1.e-7) 'verb' - Verbosity. Values greater than 0 enable visualisation during execution (default: 0) 'labels' - true cluster assignment. Enables the computation of performance over successive iterations and a better visualisation of how clusters are split 'colours' - Matrix containing colour specification for observations in different clusters Number of rows must be equal to the number of true clusters (if 'labels' has been specified) or equal to 2.
CROSS-REFERENCE INFORMATION
This function calls:- ifelse Shorthand for ternary operator: if-then-else
- myparser Function used to parse optional arguments in form of Name,Value pairs for a number of OPC algorithms
- mc_v0 Default projection vector for maximum clusterability projection pursuit
- mcpp Maximum Clusterability Projection Pursuit (MCPP) algorithm
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005