pddp
PURPOSE
Principal Direction Divisive Partitioning algorithm
SYNOPSIS
function [idx,t] = pddp(X,K, varargin)
DESCRIPTION
Principal Direction Divisive Partitioning algorithm [IDX,T] = PDDP(X, K, VARARGIN) [IDX, T] = PDDP(X, K) produces a divisive hierarchical clustering of the N-by-D data matrix (X). This algorithm uses a hierarchy of binary partitions each splitting the observations by first projecting onto the first principal component and then splitting at the mean of the projected data [IDX,T] = PDDP(X,K) returns the cluster assignment, IDX, and the binary tree (T) containing the cluster hierarchy [IDX, T] = PDDP(X, 'PARAM1',val1, 'PARAM2',val2, ...) specifies optional parameters in the form of Name,Value pairs. 'split_index' - Criterion determining which cluster to split next Function Handle: index = split_index(v, X, pars) (v: projection vector, X:data matrix, pars: parameters structure) Cluster with MAXIMUM INDEX is split at each step of the algorithm Two standard choices of split index can be enabled by setting 'split_index' to one of the strings below: + 'scatter': Split cluster with largest total scatter value + 'size': Split largest cluster (default: split_index = 'scatter') 'minsize' - Minimum cluster size (integer) (default minsize = 1) 'labels' - true cluster labels. Only used for performance assessment Reference: D. Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998.
CROSS-REFERENCE INFORMATION
This function calls:- gpp Generic Projection Pursuit
- myparser Function used to parse optional arguments in form of Name,Value pairs for a number of OPC algorithms
- pddppp Projection Pursuit function for PDDP algorithm
- total_scatter Total scatter used as split index criterion by PDDP
- tree2clusters Assigns cluster labels from a cluster hierarchy (ctree object)
- ctree Class implementing cluster hierarchy in tree data structure
Generated on Tue 17-Jul-2018 18:58:09 by m2html © 2005