Home page for accesible maths E Solutions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

E.4 Workshop exercises from week 4

Exercise 4.1. We have 527=500+2727=46+33mod4527=500+27\equiv 27=4\cdot 6+3\equiv 3\bmod 4, so Corollary 6.3.7 implies that 527527 cannot be written as the sum of two squares.

Exercise 4.2.

  1. (i)

    24=16-1mod172^{4}=16\equiv-1\bmod 17, so 216=(24)4(-1)4=1mod172^{16}=(2^{4})^{4}\equiv(-1)^{4}=1\bmod 17.

  2. (ii)

    72=49-3mod137^{2}=49\equiv-3\bmod 13, so 74=(72)2(-3)2=9-4mod137^{4}=(7^{2})^{2}\equiv(-3)^{2}=9\equiv-4\bmod 13, and thus

    712=(74)3(-4)3=-641mod13.7^{12}=(7^{4})^{3}\equiv(-4)^{3}=-64\equiv 1\bmod 13.

Exercise 4.3.

  1. (i)
    1. (a)

      Not reflexive, e.g., 2≁22\not\sim 2 because 22=412\cdot 2=4\neq 1.

    2. (b)

      Symmetric: if ab=1ab=1 then ba=1ba=1.

    3. (c)

      Transitive: if ab=1=bcab=1=bc then a=b=c=±1a=b=c=\pm 1 so ac=1ac=1.

  2. (ii)
    1. (a)

      Not reflexive, e.g., 1≁11\not\sim 1 because 21=2>12\cdot 1=2>1.

    2. (b)

      Not symmetric, e.g., 131\sim 3 (because 21=2<32\cdot 1=2<3), but 3≁13\not\sim 1 (because 23=6>12\cdot 3=6>1).

    3. (c)

      Transitive: if aba\sim b and bcb\sim c, then 2ab2a\leqslant b and 2bc2b\leqslant c, and thus 2ab2bc2a\leqslant b\leqslant 2b\leqslant c, so that aca\sim c.

Exercise 4.5. We have 4-1mod54\equiv-1\bmod 5 and 61mod56\equiv 1\bmod 5, and thus

42n+1+62n+1(-1)2n+1+12n+1=-1+1=0mod5,4^{2n+1}+6^{2n+1}\equiv(-1)^{2n+1}+1^{2n+1}=-1+1=0\bmod 5,

so that 5|(42n+1+62n+1)5|(4^{2n+1}+6^{2n+1}) for each nn\in{\mathbb{N}}.

Exercise 4.6. Given (a,b)^\widehat{(a,b)}, (c,d)^\widehat{(c,d)} and (e,f)^\widehat{(e,f)}, we have

(a,b)^((c,d)^+(e,f)^)=(a,b)^(cf+de,df)^=(acf+ade,bdf)^\widehat{(a,b)}\bigl(\widehat{(c,d)}+\widehat{(e,f)}\bigr)=\widehat{(a,b)}% \widehat{(cf+de,df)}=\widehat{(acf+ade,bdf)}

and

(a,b)^(c,d)^+(a,b)^(e,f)^=(ac,bd)^+(ae,bf)^=(acbf+bdae,b2df)^.\widehat{(a,b)}\widehat{(c,d)}+\widehat{(a,b)}\widehat{(e,f)}=\ \widehat{(ac,% bd)}+\widehat{(ae,bf)}=\widehat{(acbf+bdae,b^{2}df)}.

Since

(acf+ade)b2df=ab2cdf2+ab2d2ef=bdf(acbf+bdae),(acf+ade)b^{2}df=ab^{2}cdf^{2}+ab^{2}d^{2}ef=bdf(acbf+bdae),

the two equivalence classes are equal as required.

Exercise 4.7.

  1. (i)

    1^={1}\widehat{1}=\{1\}, 2^={1,2}\widehat{2}=\{1,2\}, 3^={1,3}\widehat{3}=\{1,3\}, 4^={1,2,4}\widehat{4}=\{1,2,4\}, 5^={1,5}\widehat{5}=\{1,5\}, 6^={1,2,3,6}\widehat{6}=\{1,2,3,6\}.

  2. (ii)

    The sets b^\widehat{b} do not form a partition of SS — all the sets are distinct, but no two of them are disjoint.

  3. (iii)

    By (ii), \sim cannot be an equivalence relation (see Proposition 6.2.3(iii)); this can also be seen directly: \sim is reflexive and transitive, but not symmetric (e.g., 121\sim 2 (because 1|21|2), but 2≁12\not\sim 1 (because 2| 12\!\!\!\!\;\not\!\!\!\;|\!\;1)).

Exercise 4.8.

+0^1^2^3^4^5^0^0^1^2^3^4^5^1^1^2^3^4^5^0^2^2^3^4^5^0^1^3^3^4^5^0^1^2^4^4^5^0^1^2^3^5^5^0^1^2^3^4^    ×0^1^2^3^4^5^0^0^0^0^0^0^0^1^0^1^2^3^4^5^2^0^2^4^0^2^4^3^0^3^0^3^0^3^4^0^4^2^0^4^2^5^0^5^4^3^2^1^\begin{array}[]{|c|cccccc|}\hline+&\widehat{0}&\widehat{1}&\widehat{2}&% \widehat{3}&\widehat{4}&\widehat{5}\\ \hline\widehat{0}&\widehat{0}&\widehat{1}&\widehat{2}&\widehat{3}&\widehat{4}&% \widehat{5}\\ \widehat{1}&\widehat{1}&\widehat{2}&\widehat{3}&\widehat{4}&\widehat{5}&% \widehat{0}\\ \widehat{2}&\widehat{2}&\widehat{3}&\widehat{4}&\widehat{5}&\widehat{0}&% \widehat{1}\\ \widehat{3}&\widehat{3}&\widehat{4}&\widehat{5}&\widehat{0}&\widehat{1}&% \widehat{2}\\ \widehat{4}&\widehat{4}&\widehat{5}&\widehat{0}&\widehat{1}&\widehat{2}&% \widehat{3}\\ \widehat{5}&\widehat{5}&\widehat{0}&\widehat{1}&\widehat{2}&\widehat{3}&% \widehat{4}\\ \hline\end{array}\qquad\qquad\begin{array}[]{|c|cccccc|}\hline\times&\widehat{% 0}&\widehat{1}&\widehat{2}&\widehat{3}&\widehat{4}&\widehat{5}\\ \hline\widehat{0}&\widehat{0}&\widehat{0}&\widehat{0}&\widehat{0}&\widehat{0}&% \widehat{0}\\ \widehat{1}&\widehat{0}&\widehat{1}&\widehat{2}&\widehat{3}&\widehat{4}&% \widehat{5}\\ \widehat{2}&\widehat{0}&\widehat{2}&\widehat{4}&\widehat{0}&\widehat{2}&% \widehat{4}\\ \widehat{3}&\widehat{0}&\widehat{3}&\widehat{0}&\widehat{3}&\widehat{0}&% \widehat{3}\\ \widehat{4}&\widehat{0}&\widehat{4}&\widehat{2}&\widehat{0}&\widehat{4}&% \widehat{2}\\ \widehat{5}&\widehat{0}&\widehat{5}&\widehat{4}&\widehat{3}&\widehat{2}&% \widehat{1}\\ \hline\end{array}

As xx runs through the elements of 6{\mathbb{Z}}_{6}, 4^x\widehat{4}\,x runs through the row of the multiplication table headed 4^\widehat{4}; as there is no entry 5^\widehat{5} in this row, there is no x6x\in{\mathbb{Z}}_{6} satisfying 4^x=5^\widehat{4}\,x=\widehat{5}.

Exercise 4.10.

  1. (i)

    The multiplication table above shows that 2^\widehat{2}, 3^\widehat{3} and 4^\widehat{4} are zero divisors in 6{\mathbb{Z}}_{6} because 2,3,4{1,2,3,4,5}2,3,4\in\{1,2,3,4,5\} and 2^3^=0^=3^4^\widehat{2}\cdot\widehat{3}=\widehat{0}=\widehat{3}\cdot\widehat{4}. There are no other zero divisors because the table shows that 1^k^0^\widehat{1}\cdot\widehat{k}\neq\widehat{0} and 5^k^0^\widehat{5}\cdot\widehat{k}\neq\widehat{0} for each k{1,2,3,4,5}k\in\{1,2,3,4,5\}.

  2. (ii)

    Similarly, the multiplication table for 5{\mathbb{Z}}_{5} in the notes shows that there are no zero divisors in 5{\mathbb{Z}}_{5} because n^k^0\widehat{n}\cdot\widehat{k}\neq 0 for n,k{1,2,3,4}n,k\in\{1,2,3,4\}.

Exercise 4.11. For each aa\in{\mathbb{N}}, aa=a2aa=a^{2} is a square, so aaa\sim a, and \sim is reflexive.

If aba\sim b, then abab is a square; thus ba=abba=ab is also a square, so bab\sim a, and therefore \sim is symmetric.

If aba\sim b and bcb\sim c, then abab and bcbc are squares, say ab=m2ab=m^{2} and bc=n2bc=n^{2} for some m,nm,n\in{\mathbb{N}}; then

ac=m2bn2b=m2n2b2=(mnb)2,ac=\frac{m^{2}}{b}\cdot\frac{n^{2}}{b}=\frac{m^{2}n^{2}}{b^{2}}=\biggl(\frac{% mn}{b}\biggr)^{2},

and as acac\in{\mathbb{N}}, Exercise 3.22(ii) implies that mn/bmn/b\in{\mathbb{N}}, so that acac is a square, and hence aca\sim c. This prove that \sim is transitive, and therefore \sim is an equivalence relation.

Exercise 4.12. The argument assumes that for each aSa\in S there is an element bSb\in S with aba\sim b — but this may fail as in Exercise 4.3(i) above where no nn\in{\mathbb{Z}} with 2n2\sim n exists.

Exercise 4.13. The squares modulo 1010 are

02=0\displaystyle 0^{2}=0 0mod10,\displaystyle\equiv 0\bmod 10, 12=1\displaystyle 1^{2}=1 1mod10,\displaystyle\equiv 1\bmod 10, 22=4\displaystyle 2^{2}=4 4mod10,\displaystyle\equiv 4\bmod 10,
32=9\displaystyle 3^{2}=9 9mod10,\displaystyle\equiv 9\bmod 10, 42=16\displaystyle 4^{2}=16 6mod10,\displaystyle\equiv 6\bmod 10, 52=25\displaystyle 5^{2}=25 5mod10,\displaystyle\equiv 5\bmod 10,
62=36\displaystyle 6^{2}=36 6mod10,\displaystyle\equiv 6\bmod 10, 72=49\displaystyle 7^{2}=49 9mod10,\displaystyle\equiv 9\bmod 10, 82=64\displaystyle 8^{2}=64 4mod10,\displaystyle\equiv 4\bmod 10,
92=81\displaystyle 9^{2}=81 1mod10.\displaystyle\equiv 1\bmod 10.

Since the numbers 22, 33, 77 and 88 do not appear on any of the right-hand sides, we conclude that no square is congruent to 22, 33, 77 or 88 modulo 1010. This proves the result because each natural number is congruent to its final digit modulo 1010.

Exercise 4.14. We have 32=9-2mod113^{2}=9\equiv-2\bmod 11, and thus

310=(32)5(-2)5=-321mod11.3^{10}=(3^{2})^{5}\equiv(-2)^{5}=-32\equiv 1\bmod 11.

Hence the remainder on dividing 3103^{10} by 1111 is 11.

Exercise 4.15. Let nn\in\mathbb{N}. We have 52=254mod75^{2}=25\equiv 4\bmod 7 and 43=641mod74^{3}=64\equiv 1\bmod 7. It follows that

56=(52)3431mod7,5^{6}=(5^{2})^{3}\equiv 4^{3}\equiv 1\bmod 7,

and thus

56n+1=(56)n51n5=5mod7.5^{6n+1}=(5^{6})^{n}\cdot 5\equiv 1^{n}\cdot 5=5\bmod 7.

Further, we have

43n+2=(43)n421n162mod7.4^{3n+2}=(4^{3})^{n}\cdot 4^{2}\equiv 1^{n}\cdot 16\equiv 2\bmod 7.

In conclusion,

56n+1+43n+25+20mod7,5^{6n+1}+4^{3n+2}\equiv 5+2\equiv 0\bmod 7,

and therefore 77 divides 56n+1+43n+25^{6n+1}+4^{3n+2} for each nn\in{\mathbb{N}}.