Home page for accesible maths E Solutions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

E.5 Online-assessed exercises from week 1

Exercise 1.18. We construct the truth table; as there are 33 statement variables involved, it has 23=82^{3}=8 rows.

pp qq rr ¬r\neg r qq or (¬r)(\neg r) p(qor(¬r))p\Rightarrow\bigl(q\ \text{or}\ (\neg r)\bigr) ¬q\neg q (p(qor(¬r)))&(¬q)\Bigl(p\Rightarrow\bigl(q\ \text{or}\ (\neg r)\bigr)\Bigr)\ \&\ (\neg q)
TT TT TT FF TT TT FF FF
TT TT FF TT TT TT FF FF
TT FF TT FF FF FF TT FF
TT FF FF TT TT TT TT TT
FF TT TT FF TT TT FF FF
FF TT FF TT TT TT FF FF
FF FF TT FF FF TT TT TT
FF FF FF TT TT TT TT TT

Thus (E) is the correct answer.

Exercise 1.19. As there are 33 variables involved, the parity table must have 23=82^{3}=8 rows and the following columns.

xx yy zz y\sim\!y (y)+z(\sim\!y)+z x×((y)+z))x\times\bigl((\sim\!y)+z)\bigr)
DD DD DD EE DD DD
DD DD EE EE EE EE
DD EE DD DD EE EE
DD EE EE DD DD DD
EE DD DD EE DD EE
EE DD EE EE EE EE
EE EE DD DD EE EE
EE EE EE DD DD EE

Thus (C) is the correct answer.

Exercise 1.20. The correct answer is (D). The reason is as follows.

First, since 3n-13n-1\in{\mathbb{Z}} for each nn\in{\mathbb{Z}}, we have

(3n-1L)(-13n-12)(03n3)(0n1),(3n-1\in L)\ \Leftrightarrow\ (-1\leqslant 3n-1\leqslant 2)\ \Leftrightarrow\ % (0\leqslant 3n\leqslant 3)\ \Leftrightarrow\ (0\leqslant n\leqslant 1),

so that M={0,1}M=\{0,1\}.

Second, by definition we have

N={2(-1)+1,20+1,21+1,22+1}={-1,1,3,5}.N=\{2(-1)+1,2\cdot 0+1,2\cdot 1+1,2\cdot 2+1\}=\{-1,1,3,5\}.

Exercise 1.21. (D) is the correct answer.

Exercise 1.22. The negation of

(x)(y)(z)((z>x)(z>y))(\forall x\in\mathbb{R})(\exists\,y\in\mathbb{Q})(\forall z\in\mathbb{R})\bigl% ((z>x)\Rightarrow(z>y)\bigr)

is

(x)(y)(z)(¬((z>x)(z>y))),(\exists\,x\in\mathbb{R})(\forall y\in\mathbb{Q})(\exists\,z\in\mathbb{R})% \Bigl(\neg\bigl((z>x)\Rightarrow(z>y)\bigr)\Bigr),

and ¬((z>x)(z>y))\neg\bigl((z>x)\Rightarrow(z>y)\bigr) is logically equivalent to (z>x)&(zy)(z>x)\ \&\ (z\leqslant y), so that (A) is the correct answer.