Home page for accesible maths E Solutions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

E.3 Workshop exercises from week 3

Exercise 3.1. By Theorem 4.5.5,

lcm(84,30)=8430hcf(84,30)=84306=845=420.\mathrm{lcm}(84,30)=\frac{84\cdot 30}{\mathrm{hcf}(84,30)}=\frac{84\cdot 30}{6% }=84\cdot 5=420.

Exercise 3.2.

  1. (i)

    The remainder on dividing 237237 by 5454 is 237-454=21237-4\cdot 54=21, so Proposition 5.1.5(ii) shows that n=21n=21 is the smallest positive integer such that n237mod54n\equiv 237\bmod 54.

  2. (ii)

    The remainder on dividing 23912391 by 142142 is 119119 (because 2391=16142+1192391=16\cdot 142+119), so Proposition 5.1.5(ii) implies that 119119 is the smallest positive integer congruent to 23912391 modulo 142142. Thus the largest negative integer congruent to 23912391 modulo 142142 is 119-142=-23119-142=-23.

Exercise 3.3.

  1. (i)

    We use the Euclidean algorithm:

    237\displaystyle 237 =545+12\displaystyle=5\cdot 45+12   and  3\displaystyle\qquad\text{and}\qquad 3 =12-9\displaystyle=12-9
    45\displaystyle 45 =312+9\displaystyle=3\cdot 12+9 =12-(45-312)=412-45\displaystyle=12-(45-3\cdot 12)=4\cdot 12-45
    12\displaystyle 12 =9+3\displaystyle=9+3 =4(237-545)-45=4237-2145.\displaystyle=4(237-5\cdot 45)-45=4\cdot 237-21\cdot 45.
    9\displaystyle 9 =33\displaystyle=3\cdot 3

    Thus hcf(237,45)=3=4237-2145\mathrm{hcf}(237,45)=3=4\cdot 237-21\cdot 45, and Theorem 4.5.5 shows that

    lcm(237,45)=237453=3555.\mathrm{lcm}(237,45)=\frac{237\cdot 45}{3}=3555.
  2. (ii)
    1. (a)

      Solutions exist by Theorem 5.2.2 because hcf(45,237)=3\mathrm{hcf}(45,237)=3 divides 5454.
      Lemma 5.2.8 enables us to simplify the congruence by dividing by 33:

      (45x54mod237)(453x543mod2373)(15x18mod79).(45x\equiv 54\bmod 237)\ \Leftrightarrow\ \biggl(\frac{45}{3}x\equiv\frac{54}{% 3}\bmod\frac{237}{3}\biggr)\ \Leftrightarrow\ (15x\equiv 18\bmod 79).

      Moreover, dividing by 33 in the identity 3=4237-21453=4\cdot 237-21\cdot 45 from (i), we obtain

      1=479-2115.1=4\cdot 79-21\cdot 15.\tag{$*$}

      In particular, 1515 and 7979 are coprime, and Theorem 5.2.6 shows the complete solution is given by

      x18(-21)=-378=(-5)79+1717mod79.x\equiv 18(-21)=-378=(-5)\cdot 79+17\equiv 17\bmod 79.
    2. (b)

      hcf(45,54)=9\mathrm{hcf}(45,54)=9 (because 9|459|45 and 9|549|54 and 9=(-1)45+549=(-1)\cdot 45+54, or by prime factorization), and 9| 2379\!\!\!\!\;\not\!\!\!\;|\!\;237, so no solutions exist to this congruence.

    3. (c)

      Since hcf(237,45)=3\mathrm{hcf}(237,45)=3 divides 5454, solutions exist. We simplify the congruence by dividing by 33:

      (237x54mod45)(2373x543mod453)(79x18mod15).(237x\equiv 54\bmod 45)\ \Leftrightarrow\ \biggl(\frac{237}{3}x\equiv\frac{54}% {3}\bmod\frac{45}{3}\biggr)\ \Leftrightarrow\ (79x\equiv 18\bmod 15).

      Since 7979 and 1515 are coprime, Theorem 5.2.6 and (a) imply that the complete solution is given by

      x418=72=415+1212mod15.x\equiv 4\cdot 18=72=4\cdot 15+12\equiv 12\bmod 15.

Exercise 3.5. By Proposition 5.3.5, if simultaneous solutions exist, hcf(1176,363)=3\mathrm{hcf}(1176,363)=3 must divide 36-50=-1436-50=-14. As 33 does not divide -14-14, no simultaneous solutions exist.

Exercise 3.6.

  1. (i)

    A bit of experimentation shows that 1=55-2121=5\cdot 5-2\cdot 12, and thus 55 and 1212 are coprime. (Alternatively, use the Euclidean algorithm.)

  2. (ii)

    The Chinese Remainder Theorem (Theorem 5.3.2) applies because 55 and 1212 are coprime by (i). In the notation used in Theorem 5.3.2, we have a=3a=3, b=9b=9, m=5m=5, n=12n=12, r=5r=5 and s=-2s=-2, so that asn+brm=3(-2)12+955=153asn+brm=3\cdot(-2)\cdot 12+9\cdot 5\cdot 5=153 and mn=512=60mn=5\cdot 12=60, and the complete solution is given by x153mod60x\equiv 153\bmod 60. Since 153=260+33153=2\cdot 60+33, we can simplify this answer to x33mod60x\equiv 33\bmod 60.

Exercise 3.7.

  1. (i)

    1176=233721176=2^{3}\cdot 3\cdot 7^{2} and 363=3112363=3\cdot 11^{2}, where 22, 33, 77 and 1111 are prime numbers (as we showed using the Sieve of Eratosthenes in Section 4.6).

  2. (ii)

    Proposition 4.7.10 and the prime factorizations found in (i) imply that

    hcf(1176,363)=20370110=3andlcm(1176,363)=23372112=142 296.\mathrm{hcf}(1176,363)=2^{0}\cdot 3\cdot 7^{0}\cdot 11^{0}=3\ \ \text{and}\ \ % \mathrm{lcm}(1176,363)=2^{3}\cdot 3\cdot 7^{2}\cdot 11^{2}=142\,296.
  3. (iii)

    Combining Corollary 4.7.5 with the prime factorizations found in (i), we see that 11761176 has (3+1)(1+1)(2+1)=24(3+1)\cdot(1+1)\cdot(2+1)=24 positive factors, while 363363 has (1+1)(2+1)=6(1+1)\cdot(2+1)=6 positive factors.

Exercise 3.8. If xx denotes the number of pupils, then xx is a simultaneous solution to the two congruences x6mod8x\equiv 6\bmod 8 and x4mod11x\equiv 4\bmod 11; further, we know that 0<x<1000<x<100. We find 1=311-481=3\cdot 11-4\cdot 8 by experimentation (or the Euclidean algorithm), so that 88 and 1111 are coprime, and the Chinese Remainder Theorem applies. The complete solution is given by

xasn+brm=6311+4(-4)8=198-128=70mod88.x\equiv asn+brm=6\cdot 3\cdot 11+4(-4)8=198-128=70\bmod 88.

As 70-88<070-88<0 and 70+88>10070+88>100, we conclude that the number of pupils is 7070.

Exercise 3.9. First note that if nn is a number in the grid and is not prime, then n=abn=ab where 1<ab<n1<a\leqslant b<n; then a2ab=n10 000a^{2}\leqslant ab=n\leqslant 10\,000, so a100a\leqslant 100. Thus every number in the grid which is not prime has a factor less than 100100, and thus in particular a prime factor less than 100100. It is therefore only necessary to go through crossing out multiples of pp if p100p\leqslant 100. As we have seen in Section 4.6 of the lecture notes, there are 2525 such primes, so it is necessary to go through the grid 2525 times.

Exercise 3.10.

  1. (i)

    We have hcf(14,35)=7\mathrm{hcf}(14,35)=7 (either by prime factorization or by the facts that 7|147|14, 7|357|35 and 7=35-2147=35-2\cdot 14). As 7| 277\!\!\!\!\;\not\!\!\!\;|\!\;27, Theorem 5.2.2 implies that the congruence has no solutions.

  2. (ii)

    Since 1=13-261=13-2\cdot 6, we have hcf(6,13)=1\mathrm{hcf}(6,13)=1, so solutions exist, and Theorem 5.2.6 implies that the complete solution is given by

    x5(-2)=-103mod13.x\equiv 5(-2)=-10\equiv 3\bmod 13.
  3. (iii)

    We have hcf(15,21)=3\mathrm{hcf}(15,21)=3 (using prime factorization) and 3|123|12, so solutions exist. Lemma 5.2.8 enables us to simplify the congruence; we have 15x12mod2115x\equiv 12\bmod 21 if and only if 5x4mod75x\equiv 4\bmod 7. Now 55 and 77 are coprime, and we have 1=35-271=3\cdot 5-2\cdot 7, so Theorem 5.2.6 shows that the complete solution to the congruence is given by

    x34=125mod7.x\equiv 3\cdot 4=12\equiv 5\bmod 7.
  4. (iv)

    As hcf(12,45)=3\mathrm{hcf}(12,45)=3 (by prime factorization) and 3|303|30, solutions exist. Again we apply Lemma 5.2.8 to simplify; we have 12x30mod4512x\equiv 30\bmod 45 if and only if 4x10mod154x\equiv 10\bmod 15. Now hcf(4,15)=1=44-15\mathrm{hcf}(4,15)=1=4\cdot 4-15, and the complete solution is therefore given by

    x410=4010mod15.x\equiv 4\cdot 10=40\equiv 10\bmod 15.

Exercise 3.11. In the notation of The Chinese Remainder Theorem (Theorem 5.3.2), we have a=36a=36, b=48b=48, m=217m=217 and n=247n=247. We apply the Euclidean algorithm to show that mm and nn are coprime (so that Theorem 5.3.2 applies) and to write 1=rm+sn1=rm+sn:

247\displaystyle 247 =1217+30\displaystyle=1\cdot 217+30 1\displaystyle 1 =7-32\displaystyle=7-3\cdot 2
217\displaystyle 217 =730+7\displaystyle=7\cdot 30+7 =7-3(30-47)=137-330\displaystyle=7-3\cdot(30-4\cdot 7)=13\cdot 7-3\cdot 30
30\displaystyle 30 =47+2\displaystyle=4\cdot 7+2 =13(217-730)-330=13217-9430\displaystyle=13\cdot(217-7\cdot 30)-3\cdot 30=13\cdot 217-94\cdot 30
7\displaystyle 7 =32+1\displaystyle=3\cdot 2+1 =13217-94(247-217)=107217-94247.\displaystyle=13\cdot 217-94\cdot(247-217)=107\cdot 217-94\cdot 247.

Hence r=107r=107 and s=-94s=-94. Now

c=asn+brm=36(-94)247+48107217=278664c=asn+brm=36\cdot(-94)\cdot 247+48\cdot 107\cdot 217=278664

is a simultaneous solution to the two congruences, and the complete solution is given by xcmodmnx\equiv c\bmod mn, that is, x278664mod53599x\equiv 278664\bmod 53599.

Division with remainder shows that 278664=553599+10669278664=5\cdot 53599+10669, so the answer can (and should) be simplified to x10669mod53599x\equiv 10669\bmod 53599.

Exercise 3.13. All primes other than 22 are odd, and thus are of the form either 4n+14n+1 or 4n+34n+3 for some n0n\in{\mathbb{N}}_{0}. Suppose that there are only finitely many primes of the form 4n+34n+3, say p1,p2,,pkp_{1},p_{2},\dots,p_{k}, where kk\in{\mathbb{N}}, and let N=4p1p2pk-1N=4p_{1}p_{2}\cdots p_{k}-1. Then no pjp_{j} divides NN (as NN is of the form rpj-1rp_{j}-1), and 2|N2\!\!\!\!\;\not\!\!\!\;|\!\;N (as NN is odd); thus if N=q1q2qmN=q_{1}q_{2}\cdots q_{m} is the prime factorization of NN, then each qjq_{j} must be of the form 4n+14n+1, say qj=4nj+1q_{j}=4n_{j}+1, where n1,,nmn_{1},\ldots,n_{m}\in\mathbb{N}. However, the product q1q2qmq_{1}q_{2}\cdots q_{m} is then also of the form 4n+14n+1 because

q1q2qm=(4n1+1)(4n2+1)(4nm+1)=4n+1q_{1}q_{2}\cdots q_{m}=(4n_{1}+1)(4n_{2}+1)\cdots(4n_{m}+1)=4n+1

for some nn\in\mathbb{N}, whereas N=4(p1p2pk-1)+3N=4(p_{1}p_{2}\cdots p_{k}-1)+3. This contradiction proves that there must be infinitely many primes of the form 4n+34n+3.

Note: the last part of the argument can be elegantly written using congruence notation; indeed, we have

N=4p1p2pk-1-13mod4,N=4p_{1}p_{2}\cdots p_{k}-1\equiv-1\equiv 3\bmod 4,

whereas

q1q2qm=(4n1+1)(4n2+1)(4nm+1)111=1mod4,q_{1}q_{2}\cdots q_{m}=(4n_{1}+1)(4n_{2}+1)\cdots(4n_{m}+1)\equiv 1\cdot 1% \cdots 1=1\bmod 4,

so we cannot have N=q1q2qmN=q_{1}q_{2}\cdots q_{m}.

Exercise 3.14.

  1. (i)

    The result is obvious for n=1n=1. For n2n\geqslant 2, write n=p1a1p2a2prarn={p_{1}}^{a_{1}}{p_{2}}^{a_{2}}\cdots{p_{r}}^{a_{r}}, where rr\in\mathbb{N}, p1,p2,,prp_{1},p_{2},\ldots,p_{r} are distinct prime numbers, and a1,a2,,ara_{1},a_{2},\ldots,a_{r}\in\mathbb{N}. Corollary 4.7.5 implies that nn has (a1+1)(a2+1)(ar+1)(a_{1}+1)(a_{2}+1)\cdots(a_{r}+1) positive factors. If any of the terms aj+1a_{j}+1 is even, then this product is even, and vice versa, so we conclude that the number of positive factors of nn is odd if and only if aj+1a_{j}+1 is odd for each j{1,2,,r}j\in\{1,2,\ldots,r\}. Now aj+1a_{j}+1 is odd precisely when aja_{j} is even, say aj=2bja_{j}=2b_{j} for some bjb_{j}\in\mathbb{N}. Thus the number of factors of nn is odd if and only if

    n=p12b1p22b2pr2br=(p1b1p2b2prbr)2,n={p_{1}}^{2b_{1}}{p_{2}}^{2b_{2}}\cdots{p_{r}}^{2b_{r}}=({p_{1}}^{b_{1}}{p_{2% }}^{b_{2}}\cdots{p_{r}}^{b_{r}})^{2},

    i.e., nn is a square.

  2. (ii)

    If we pair together numbers a,ba,b with n=abn=ab, this groups the factors of nn into pairs — the only possible exception is if a=ba=b, in which case n=a2n=a^{2}. Thus if nn is a perfect square, the factors comprise various pairs with n\sqrt{n} left over, so the number of factors is odd; if nn is not a perfect square, the factors can be paired off with none left over, so the number of factors is even.