Home page for accesible maths E Solutions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

E.8 Tutor-assessed exercises from week 1

Exercise 1.16. The two statements are logically equivalent because the 7th7^{\text{th}} and 9th9^{\text{th}} columns of the following truth table are the same.

pp qq rr pqp\Rightarrow q qrq\Rightarrow r (pq)(qr)(p\Rightarrow q)\Rightarrow(q\Rightarrow r) ¬((pq)(qr))\neg\bigl((p\Rightarrow q)\Rightarrow(q\Rightarrow r)\bigr) ¬r\neg r q&(¬r)q\ \&\ (\neg r)
TT TT TT TT TT TT FF FF FF
TT TT FF TT FF FF TT TT TT
TT FF TT FF TT TT FF FF FF
TT FF FF FF TT TT FF TT FF
FF TT TT TT TT TT FF FF FF
FF TT FF TT FF FF TT TT TT
FF FF TT TT TT TT FF FF FF
FF FF FF TT TT TT FF TT FF

Exercise 1.17.

  1. (a)

    (m{-3,-2,-1,1,2,3})(q)((q>0)&(1m=q-32))\displaystyle{\bigl(\forall m\in\{-3,-2,-1,1,2,3\}\bigr)(\exists\,q\in\mathbb{% Q})\Biggl((q>0)\ \ \&\ \ \biggl(\frac{1}{m}=q-\frac{3}{2}\biggr)\Biggr)}.

  2. (b)

    Negation: (m{-3,-2,-1,1,2,3})(q)((q0)or(1mq-32))\displaystyle{\bigl(\exists\,m\in\{-3,-2,-1,1,2,3\}\bigr)(\forall q\in\mathbb{% Q})\Biggl((q\leqslant 0)\ \ \text{or}\ \ \biggl(\frac{1}{m}\neq q-\frac{3}{2}% \biggr)\Biggr)}.

  3. (c)

    The statement in part (a) is true. Indeed, suppose that m{-3,-2,-1,1,2,3}m\in\{-3,-2,-1,1,2,3\}, and let

    q=1m+32q=\frac{1}{m}+\frac{3}{2}

    (found by solving the equation 1m=q-32\frac{1}{m}=q-\frac{3}{2} for qq). Then certainly the equation 1m=q-32\frac{1}{m}=q-\frac{3}{2} holds, qq is rational because 1m\frac{1}{m} and 32\frac{3}{2} are, and qq is positive because 1m-1\frac{1}{m}\geqslant-1 for each m{-3,-2,-1,1,2,3}m\in\{-3,-2,-1,1,2,3\}, so that

    q=1m+32-1+32=12>0.q=\frac{1}{m}+\frac{3}{2}\geqslant-1+\frac{3}{2}=\frac{1}{2}>0.

Bonus exercise 1.23. We claim that ‘‘pqp\Rightarrow q’’ is logically equivalent to ‘‘¬(p&(¬q))\neg\bigl(p\ \&\ (\neg q)\bigr)’’ for all statement variables pp and qq. This follows from the fact that the third and sixth column of the following truth table are the same.

pp qq pqp\Rightarrow q ¬q\neg q p&(¬q)p\ \&\ (\neg q) ¬(p&(¬q))\neg\bigl(p\ \&\ (\neg q)\bigr)
TT TT TT FF FF TT
TT FF FF TT TT FF
FF TT TT FF FF TT
FF FF TT TT FF TT

Bonus exercise 1.24.

(x)(y)((xy)&(2x3+x2-4x+4=0)&(2y3+y2-4y+4=0)).(\exists\,x\in\mathbb{R})(\exists\,y\in\mathbb{R})\bigl((x\neq y)\ \&\ (2x^{3}% +x^{2}-4x+4=0)\ \&\ (2y^{3}+y^{2}-4y+4=0)\bigr).

Alternatively, we may combine the first two quantifiers and write this statement as

(x,y)((xy)&(2x3+x2-4x+4=0)&(2y3+y2-4y+4=0)).(\exists\,x,y\in\mathbb{R})\bigl((x\neq y)\ \&\ (2x^{3}+x^{2}-4x+4=0)\ \&\ (2y% ^{3}+y^{2}-4y+4=0)\bigr).

This statement is false. Indeed, by experimentation we find that -2-2 is a root of the polynomial 2x3+x2-4x+42x^{3}+x^{2}-4x+4, and the division algorithm then shows that

2x3+x2-4x+4=(x+2)(2x2-3x+2),2x^{3}+x^{2}-4x+4=(x+2)(2x^{2}-3x+2),

where the quadratic factor 2x2-3x+22x^{2}-3x+2 has no real roots because its discriminant D=(-3)2-422=-7D=(-3)^{2}-4\cdot 2\cdot 2=-7 is negative. Hence 2x3+x2-4x+42x^{3}+x^{2}-4x+4 has exactly one real root (namely -2-2).