Home page for accesible maths E Solutions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

E.7 Online-assessed exercises from week 3

Exercise 3.17. We have 4320=253354320=2^{5}\cdot 3^{3}\cdot 5 and 2652=22313172652=2^{2}\cdot 3\cdot 13\cdot 17, where 22, 33, 55, 1313 and 1717 are prime (as we showed using the Sieve of Eratosthenes in Section 4.6). Proposition 4.7.10 implies that

d=hcf(4320,2652)=223=12and=lcm(1176,363)=253351317=954 720.d=\mathrm{hcf}(4320,2652)=2^{2}\cdot 3=12\ \ \text{and}\ \ \ell=\mathrm{lcm}(1% 176,363)=2^{5}\cdot 3^{3}\cdot 5\cdot 13\cdot 17=954\,720.

By Corollary 4.7.5, 43204320 has m=(5+1)(3+1)(1+1)=642=48m=(5+1)(3+1)(1+1)=6\cdot 4\cdot 2=48 positive factors. Hence (A) is the correct answer.

Exercise 3.18. We have hcf(28,84)=28\mathrm{hcf}(28,84)=28 because 28|8428|84 (or because their prime factorizations are 28=22728=2^{2}\cdot 7 and 84=223784=2^{2}\cdot 3\cdot 7, or alternatively by the Euclidean algorithm), so Theorem 5.2.2 implies that:

  • the congruence 28x49mod8428x\equiv 49\bmod 84 has no solutions because 28| 4928\!\!\!\!\;\not\!\!\!\;|\!\;49;

  • the congruence 28x54mod8428x\equiv 54\bmod 84 has no solutions because 28| 5428\!\!\!\!\;\not\!\!\!\;|\!\;54;

  • the congruence 28x63mod8428x\equiv 63\bmod 84 has no solutions because 28| 6328\!\!\!\!\;\not\!\!\!\;|\!\;63.

Hence (B) is the correct answer.

Exercise 3.19. The highest common factor of 3636 and 339339 is 33 because

339\displaystyle 339 =936+15\displaystyle=9\cdot 36+15   and  3\displaystyle\qquad\text{and}\qquad 3 =15-26\displaystyle=15-2\cdot 6
36\displaystyle 36 =215+6\displaystyle=2\cdot 15+6 =15-2(36-215)=(-2)36+515\displaystyle=15-2(36-2\cdot 15)=(-2)36+5\cdot 15
15\displaystyle 15 =26+3\displaystyle=2\cdot 6+3 =(-2)36+5(339-936)\displaystyle=(-2)36+5(339-9\cdot 36)
6\displaystyle 6 =23\displaystyle=2\cdot 3 =5339-4736.\displaystyle=5\cdot 339-47\cdot 36.

As 3|1113|111, the congruence has solutions, and we can simplify it to 12x37mod11312x\equiv 37\bmod 113, where 1212 and 113113 are coprime because 1=5113-47121=5\cdot 113-47\cdot 12 (divide by 33 in the integral linear combination found above). Hence the complete solution is given by

x(-47)37=-173969mod113,x\equiv(-47)37=-1739\equiv 69\bmod 113,

so that (D) is the correct answer.

Exercise 3.20. We use the Euclidean algorithm to show that 411411 and 421421 are coprime and to write 11 as an integral linear combination of them:

421\displaystyle 421 =1411+10\displaystyle=1\cdot 411+10       1\displaystyle      1 =411-4110\displaystyle=411-41\cdot 10
411\displaystyle 411 =4110+1\displaystyle=41\cdot 10+1 =411-41(421-411)\displaystyle=411-41(421-411)
10\displaystyle 10 =101\displaystyle=10\cdot 1 =42411-41421.\displaystyle=42\cdot 411-41\cdot 421.

Hence the Chinese Remainder Theorem (Theorem 5.3.2) applies; in the notation of this theorem, we have a=48a=48, b=54b=54, m=411m=411, n=421n=421, r=42r=42 and s=-41s=-41, and the complete solution is given by

xasn+brm=48(-41)421+5442411=103 620mod173 031.x\equiv asn+brm=48\cdot(-41)\cdot 421+54\cdot 42\cdot 411=103\,620\bmod 173\,0% 31.

(Note that no further simplification is possible because 0103 620<173 0310\leqslant 103\,620<173\,031.) Hence (C) is the correct answer.

Exercise 3.21. We have hcf(60,40)=20\mathrm{hcf}(60,40)=20 (because 20|6020|60 and 20|4020|40 and 20=60-4020=60-40, or by prime factorization), and 2020 does not divide 36-14=2236-14=22, so Proposition 5.3.5 implies that the two congruences cannot be solved simultaneously. Hence (A) is the correct answer.