Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.49 Integrals over the real line

We can likewise define

-bf(x)dx=limA-Abf(x)dx\int_{-\infty}^{b}f(x)\,dx=\lim_{A\rightarrow-\infty}\int_{A}^{b}f(x)\,dx

where this limit exists. The improper integral of ff over the real line is defined to be

-f(x)dx=0f(x)dx+-0f(x)dx\int_{-\infty}^{\infty}f(x)\,dx=\int_{0}^{\infty}f(x)\,dx+\int_{-\infty}^{0}f(% x)\,dx

when both of these improper integrals on the right-hand side exist.

Notation. Formulae such as -\infty-\infty or 2/2\infty/\infty are nonsense. We must make sure that infinite areas do not cancel out.