Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.50 Example of an integral over the real line

Example.

The following improper integral converges:

-dx1+x2=π.\int_{-\infty}^{\infty}{{dx}\over{1+x^{2}}}=\pi.

Solution. Setting x=tantx={\tan t}, we have dxdt=sec2t=x2+1,\frac{dx}{dt}={\sec^{2}t=x^{2}+1,} so

0dx1+x2=0π2dt=π2\int_{0}^{\infty}\frac{dx}{1+x^{2}}={\int_{0}^{\frac{\pi}{2}}dt=\frac{\pi}{2}}

and similarly for -0dx1+x2\int_{-\infty}^{0}\frac{dx}{1+x^{2}}.