Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.47 An integral from the theory of differential equations

Example.

To show that, when s>0s>0 and aa\in{\mathbb{R}},

F(s)=0sinaxe-sxdx=as2+a2.F(s)=\int_{0}^{\infty}\sin ax\,e^{-sx}\,dx={{a}\over{s^{2}+a^{2}}}.

This integral is important in the theory of differential equations. (See Laplace transforms in slides 1.59-62 and 6.38-51.)

Solution. We first calculate the indefinite integral:

I=sinaxe-sxdx=-1ssinaxe-sx+ascosaxe-sxdx{I=\int\sin ax\,e^{-sx}\,dx=}{-\frac{1}{s}\sin ax\,e^{-sx}+\frac{a}{s}\int\cos ax% \,e^{-sx}\,dx}
=-1ssinaxe-sx-as2cosaxe-sx-a2s2sinaxe-sxdx{=-\frac{1}{s}\sin ax\,e^{-sx}-\frac{a}{s^{2}}\cos ax\,e^{-sx}-\frac{a^{2}}{s^% {2}}\int\sin ax\,e^{-sx}\,dx}