Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.46 Examples of limits

Strategy: First simplify expressions, then take limits.

Problem: Find the limits as RR\rightarrow\infty of

(i)f(R)=log(2R+1)-log(R+2);(i)\quad f(R)=\log(2R+1)-\log(R+2);
(ii)g(R)=2log(R+1)-log(3R2+1).(ii)\quad g(R)=2\log(R+1)-\log(3R^{2}+1).

Solution. (i) log(2R+1)-log(R+2)=log(2R+1R+2)=log(2+1R1+2R).\log(2R+1)-\log(R+2)=\,{\log\left(\frac{2R+1}{R+2}\right)}{=\log\left(\frac{2+% \frac{1}{R}}{1+\frac{2}{R}}\right).}

Since 2+1R1+2R21=2\frac{2+\frac{1}{R}}{1+\frac{2}{R}}\rightarrow\frac{2}{1}=2 as RR\rightarrow\infty, we get: limRf(R)=log2\lim_{R\rightarrow\infty}f(R)=\log 2.

(ii) 2log(R+1)-log(3R2+1)=log((R+1)23R2+1)=log((1+1R)23+1R2).2\log(R+1)-\log(3R^{2}+1)=\,{\log\left(\frac{(R+1)^{2}}{3R^{2}+1}\right)=}\,{% \log\left(\frac{(1+\frac{1}{R})^{2}}{3+\frac{1}{R^{2}}}\right).}

As (1+1R)23+1R213\frac{(1+\frac{1}{R})^{2}}{3+\frac{1}{R^{2}}}\rightarrow\frac{1}{3} as RR\rightarrow\infty, we obtain: limRg(R)=-log3\lim_{R\rightarrow\infty}g(R)=-\log 3.