Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.45 Integration using partial fractions continued

We can now calculate the integral:

2R1x2(2x+1)dx=2R(1x2-2x+2x+12)dx\int_{2}^{R}{{1}\over{x^{2}(2x+1)}}\,dx=\int_{2}^{R}\left(\frac{1}{x^{2}}-% \frac{2}{x}+\frac{2}{x+\frac{1}{2}}\right)\,dx
=[2log(x+12)-2logx-1x]2R=[2log(x+12x)-1x]2R={\left[2\log(x+\frac{1}{2})-2\log x-\frac{1}{x}\right]_{2}^{R}}\,{=\left[2% \log\left(\frac{x+\frac{1}{2}}{x}\right)-\frac{1}{x}\right]_{2}^{R}}
=2log(R+12R)-1R-2log54+12.{=2\log\left(\frac{R+\frac{1}{2}}{R}\right)-\frac{1}{R}-2\log\frac{5}{4}+\frac% {1}{2}.}

Now R+12R=1+12R1{\frac{R+\frac{1}{2}}{R}=1+\frac{1}{2R}\rightarrow 1} as RR\rightarrow\infty, and 1R0\frac{1}{R}\rightarrow 0 as RR\rightarrow\infty, so the integral converges to 2log45+122\log\frac{4}{5}+\frac{1}{2}.