We can now calculate the integral:
Now R+12R=1+12R→1{\frac{R+\frac{1}{2}}{R}=1+\frac{1}{2R}\rightarrow 1} as R→∞R\rightarrow\infty, and 1R→0\frac{1}{R}\rightarrow 0 as R→∞R\rightarrow\infty, so the integral converges to 2log45+122\log\frac{4}{5}+\frac{1}{2}.