Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.44 Integration using partial fractions

Example.

To show that

21x2(2x+1)dx=2log45+12.\int_{2}^{\infty}{{1}\over{x^{2}(2x+1)}}\,dx=2\log{{4}\over{5}}+{{1}\over{2}}.

Solution. Here the partial fractions decomposition is

1x2(2x+1)=Ax+Bx2+C2x+1{{1}\over{x^{2}(2x+1)}}={{Ax+B}\over{x^{2}}}+{{C}\over{2x+1}}

where (Ax+B)(2x+1)+Cx2=1(Ax+B)(2x+1)+Cx^{2}=1, so (2A+C)x2+(A+2B)x+B=1(2A+C)x^{2}+(A+2B)x+B=1. Thus C=-2AC=-2A, A=-2BA=-2B and B=1B=1, so we obtain:

1x2(2x+1)=1x2-2x+42x+1=1x2-2x+2x+12.{{{1}\over{x^{2}(2x+1)}}=\frac{1}{x^{2}}-\frac{2}{x}+\frac{4}{2x+1}}{=\frac{1}% {x^{2}}-\frac{2}{x}+\frac{2}{x+\frac{1}{2}}.}