Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.32 Integral associated with the parabola

(i) For the parabola, we substitute u=ax+bu=ax+b in

0t(ax+b)1/2dx.\int_{0}^{t}(ax+b)^{1/2}dx.

Then du=adxdu=a\,dx, so dx=1adudx=\frac{1}{a}du. Hence we obtain

0t(ax+b)12dx=bat+bu121adu=[23au32]bat+b\int_{0}^{t}(ax+b)^{\frac{1}{2}}\,dx=\,{\int_{b}^{at+b}u^{\frac{1}{2}}\cdot% \frac{1}{a}\,du}\,{=\left[\frac{2}{3a}u^{\frac{3}{2}}\right]^{at+b}_{b}}
\curve(180,55,170,50) \curve(180,55,170,60) \curve(60,110,55,100) \curve(60,110,65,100) \curve(35,55,36,60,39,65,44,70,51,75,60,80,71,85,84,90,99,95,116,100,135,105, 156,110) yyxxtt=23a((at+b)32-b32).=\frac{2}{3a}((at+b)^{\frac{3}{2}}-b^{\frac{3}{2}}).