Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.30 Continuing Wright’s integral (1599)

Note that 1+tanx21-tanx2=secx+tanx.\frac{1+\tan\frac{x}{2}}{1-\tan\frac{x}{2}}=\sec x+\tan x. Indeed,

1+tanx21-tanx2=cosx2+sinx2cosx2-sinx2=(cosx2+sinx2)2cos2x2-sin2x2\frac{1+\tan\frac{x}{2}}{1-\tan\frac{x}{2}}=\frac{\cos\frac{x}{2}+\sin\frac{x}% {2}}{\cos\frac{x}{2}-\sin\frac{x}{2}}=\frac{(\cos\frac{x}{2}+\sin\frac{x}{2})^% {2}}{\cos^{2}\frac{x}{2}-\sin^{2}\frac{x}{2}}
=cos2x2+2sinx2cosx2+sin2x2cosx=1+sinxcosx=secx+tanx,=\frac{\cos^{2}\frac{x}{2}+2\sin\frac{x}{2}\cos\frac{x}{2}+\sin^{2}\frac{x}{2}% }{\cos x}=\frac{1+\sin{x}}{\cos{x}}=\sec x+\tan x,

using the double angle formulae.


Thus we can also say: secxdx=log|secx+tanx|+C\int\sec x\,dx=\log|\sec x+\tan x|+C.