Note that 1+tanx21-tanx2=secx+tanx.\frac{1+\tan\frac{x}{2}}{1-\tan\frac{x}{2}}=\sec x+\tan x. Indeed,
using the double angle formulae.
Thus we can also say: ∫secxdx=log|secx+tanx|+C\int\sec x\,dx=\log|\sec x+\tan x|+C.