Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.29 Wright’s integral (1599)

Example.
secxdx=log|1+tanx21-tanx2|+C.\int\sec x\,dx=\log\left|{{1+\tan\frac{x}{2}}\over{1-\tan\frac{x}{2}}}\right|+C.

Solution. We make the above subsitutions

secxdx=1cosxdx=1+t21-t22dt1+t2\int\sec x\,dx={\int{{1}\over{\cos x}}{{dx}}}\,{=\int{{1+t^{2}}\over{1-t^{2}}}% {{2dt}\over{1+t^{2}}}}
=2dt1-t2=(11-t+11+t)dt{=\int{{2dt}\over{1-t^{2}}}}\,{=\int\Bigl({{1}\over{1-t}}+{{1}\over{1+t}}\Bigr% )dt}
=-log|1-t|+log|1+t|+C=-log(1-tanx2)+log(1+tanx2)+C.{=-\log|1-t|+\log|1+t|+C}\,{=-\log(1-\tan\frac{x}{2})+\log(1+\tan\frac{x}{2})+% C.}