Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.26 Tangent substitutions or tanx2\tan\frac{x}{2} substitutions

Lemma.

The subsitution t=tanx2t=\tan\frac{x}{2} converts a rational function of sinx\sin x and cosx\cos x into a rational function of tt.

Proof: We claim that

dxdt=21+t2, sinx=2t1+t2, cosx=1-t21+t2.{{dx}\over{dt}}={{2}\over{1+t^{2}}},\quad\sin x={{2t}\over{1+t^{2}}},\quad\cos x% ={{1-t^{2}}\over{1+t^{2}}}.

For the first equality, we differentiate

dtdx=12sec2x2=12(1+tan2x2)=12(1+t2);{{{dt}\over{dx}}}\,{={{1}\over{2}}\sec^{2}\frac{x}{2}}\,{={{1}\over{2}}\bigl(1% +\tan^{2}\frac{x}{2}\bigr)}\,{={{1}\over{2}}\bigl(1+t^{2}\bigr);}