To find (1) ∫x2+1xdx\int{{x^{2}+1}\over x}\,dx and (2) ∫x+2x+1dx\int{{x+2}\over{x+1}}\,dx.
Solution.
For (1), we have ∫x2+1xdx=∫(x+1x)dx=x22+log|x|+c\int{{x^{2}+1}\over x}\,dx={\int(x+{1\over x})\,dx={{x^{2}}\over 2}+\log|x|+c} for some constant cc.
For (2), we express x+2x+1{{x+2}\over{x+1}} as (x+1)+1x+1=1+1x+1{{(x+1)+1}\over{x+1}}=1+{{1}\over{x+1}}.
Hence ∫x+2x+1dx=\int{{x+2}\over{x+1}}dx= ∫(1+1x+1)dx=x+log|x+1|+c\int\left(1+\frac{1}{x+1}\right)\,dx=x+\log|x+1|+c for some constant cc.