Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.19 Dealing with double roots

Example.

To express the following function as partial fractions, and integrate:

3x-1(x+2)2{{3x-1}\over{(x+2)^{2}}}

Solution. We consider

3x-1(x+2)2=Ax+2+B(x+2)2{{3x-1}\over{(x+2)^{2}}}={{A}\over{x+2}}+{{B}\over{(x+2)^{2}}}

for coefficients AA and BB to be determined; note that we need x+2x+2 as well as (x+2)2(x+2)^{2}. We cross multiply and find 3x-1=A(x+2)+B=Ax+(B+2A),3x-1={A(x+2)+B}\,{=Ax+(B+2A),} hence A=3A={3} and B=-7.B={-7.} Now 3x-1(x+2)2dx=(3x+2-7(x+2)2)dx=3log|x+2|+7x+2+c.\int{{3x-1}\over{(x+2)^{2}}}\,dx={\int\left({{3}\over{x+2}}-{7\over{(x+2)^{2}}% }\right)\,dx}\,{=3\log|x+2|+{7\over{x+2}}+c.}