Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.17 Integrating term (b)

b) For the second term we make the substitution x=αtantx=\alpha\tan t. Then dxdt=αsec2t\frac{dx}{dt}={\alpha\sec^{2}t} and

x2+α2=α2tan2t+α2=α2(1+tan2t)=α2sec2tx^{2}+\alpha^{2}={\alpha^{2}\tan^{2}t+\alpha^{2}=}\,{\alpha^{2}(1+\tan^{2}t)=% \alpha^{2}\sec^{2}t}

so the integral of the second term is:

Kdxx2+α2=Kdxdtdtx2+α2=Kαsec2tdtα2sec2t=Ktα+C\int\frac{K\,dx}{x^{2}+\alpha^{2}}=\int\frac{K\frac{dx}{dt}\,dt}{x^{2}+\alpha^% {2}}={\int\frac{K\alpha\sec^{2}t\,dt}{\alpha^{2}\sec^{2}t}=}{\frac{Kt}{\alpha}% +C}

which, in terms of xx, equals Kαtan-1(xα)\frac{K}{\alpha}\tan^{-1}\left(\frac{x}{\alpha}\right).

Putting (a) and (b) together, we obtain:

Hx+Kx2+α2dx=H2log(x2+α2)+Kαtan-1(xα)+C.\int\frac{Hx+K}{x^{2}+\alpha^{2}}dx={\frac{H}{2}\log(x^{2}+\alpha^{2})+\frac{K% }{\alpha}\tan^{-1}\left(\frac{x}{\alpha}\right)+C.}

For details of how to integrate (ii) in general, see the workshop exercises.