Learning on Location
As a part of our Zoology degrees, you will have the opportunity to conduct fieldwork in a variety of locations, both in the UK and abroad. Some of the destinations open to our students are:
We've put together information and resources to guide your application journey as a student from the United States of America.
12th for Student experience (Biological Science)
The Times and Sunday Times Good University Guide (2025)
15th for Biological Science
The Complete University Guide (2025)
16th for Graduate prospects (Biological Science)
The Complete University Guide (2026)
Zoology is a science dedicated to the study of animal life, and our degree provides a flexible range of modules covering the different elements from animal behaviour to cellular processes and physiology and from taxonomy and the diversity of animal life to evolution. Benefit from support to secure a paid placement, enabling you to experience twelve months working in the type of organisation that you might aspire to join when you graduate.
You will learn from our world-leading academics, who bring their expertise into your lectures, practical work, and small group tutorials. This will help you develop your understanding of the living world and how this knowledge can be applied to address global environmental issues.
Practical work doesn’t just take place in our state-of-the-art laboratories. You will also have the opportunity to participate in one of our exciting field trips, which include local excursions to the Lake District, Yorkshire Dales and Bowland Fells, or residential trips to Doñana National Park in southwest Spain, which is home to a plethora of plant, bird and animal species, including the world’s most endangered cat, the Iberian lynx. You can visit some of the UK’s last remaining natural habitats in rural Scotland and witness a range of animals, including red deer, osprey and golden eagles, or contribute to an expert-led study of the Rift Valley of Kenya, where you will evaluate the challenging balance between tropical conversation and human activity.
To prepare you for your work placement year, our Careers and Placements Team will provide advice and guidance on:
In addition, great emphasis is placed on developing self-awareness and on how to present yourself professionally to employers. This optional provision will be delivered via a blend of traditional and digital methods, including face-to-face workshops, online webinars, e-courses, and 1:1 appointments.
The University will use all reasonable effort to support you in finding a suitable placement for your studies. While a placement role may not be available in a field or organisation directly related to your academic studies or career aspirations, all placement roles offer valuable experience of working at a graduate level and gaining a range of professional skills. If you are unsuccessful in securing a suitable placement for your third year, you will be able to transfer to the equivalent non-placement degree scheme and continue with your studies at Lancaster, finishing your degree after your third year.
In your first year, you will learn about the broad foundations of the subject, with additional options to study another area of biology or a subject from a different science.
In year two, you will gain a deeper understanding of zoology at different levels as you specialise in areas that interest you. Core modules include the study of evolution and vertebrate biology, and you will develop your research techniques in both the laboratory and the field.
You will spend your third year on placement, which may be in a science or non-science related position, before returning to Lancaster, where you will continue in your chosen specialities. The placement allows you to work as a full-time employee of the organisation whilst still receiving academic and pastoral support from the University. Should you not successfully secure a placement, you will automatically be transferred to the third year of the same degree scheme without the placement year, in this case BSc Hons Zoology.
In your final year, you will take a core module in animal behaviour. Then, you will complete your own research project, either working with our internationally recognised academics or with an industry partner through our Enterprise and Business Partnerships team.
Our programmes maintain an excellent record for graduate prospects spanning a wide range of roles. Alternatively, many of our graduates continue their studies to postgraduate level and pursue scientific research in areas such as soil and crop science. Our goal is to empower all our graduates with the skills, confidence and experience they need to achieve a successful career. You will be offered a wide range of support, helping you realise your career ambitions and providing you with the skills to reach your full potential.
We offer a variety of extra-curricular activities and volunteering opportunities that enable you to explore your interests and enhance your CV. Our weekly careers bulletin and careers blogs are written by student volunteers, and inform you of all careers events. The Students’ Union-run Green Lancaster programme offers placements with external organisations, allowing students to gain volunteering experience at weekends by working in the local community, taking part in a wide range of activities and developing their practical skills.
Lancaster University is dedicated to ensuring you not only gain a highly reputable degree, you also graduate with the relevant life and work based skills. We are unique in that every student is eligible to participate in The Lancaster Award which offers you the opportunity to complete key activities such as work experience, employability/career development, campus community and social development. Visit our Employability section for full details.
ABB. This should include two science subjects from: Biology, Chemistry, Computing, Environmental Science, Geography, Geology, Human Biology, Mathematics, Physics or Psychology.
Considered on a case-by-case basis. Our typical entry requirement would be 30 Level 3 credits at Distinction plus 15 Level 3 credits at Merit, but you would need to have covered appropriate subject content.
We accept the Advanced Skills Baccalaureate Wales in place of one A level, or equivalent qualification, as long as any subject requirements are met.
DDM to include sufficient science. We require Distinctions in the majority of relevant science units. Not all science-based BTECs will include sufficient relevant science units. Please contact the Admissions Team for further advice.
Our typical requirement would be A level grade B plus BTEC(s) at DD, or A levels at grade BB plus BTEC at D, but you would also need to meet the subject requirements.
32 points overall with 16 points from the best 3 HL subjects including two HL science subjects at grade 6
We are happy to admit applicants on the basis of five Highers, but where we require a specific subject at A level, we will typically require an Advanced Higher in that subject. If you do not meet the grade requirement through Highers alone, we will consider a combination of Highers and Advanced Highers in separate subjects. Please contact the Admissions team for more information.
Not accepted
If you are thinking of applying to Lancaster and you would like to ask us a question, please complete our enquiry form and one of our team will get back to you.
Delivered in partnership with INTO Lancaster University, our one-year tailored foundation pathways are designed to improve your subject knowledge and English language skills to the level required by a range of Lancaster University degrees. Visit the INTO Lancaster University website for more details and a list of eligible degrees you can progress onto.
Contextual admissions could help you gain a place at university if you have faced additional challenges during your education which might have impacted your results. Visit our contextual admissions page to find out about how this works and whether you could be eligible.
Lancaster University offers a range of programmes, some of which follow a structured study programme, and some which offer the chance for you to devise a more flexible programme to complement your main specialism.
Information contained on the website with respect to modules is correct at the time of publication, and the University will make every reasonable effort to offer modules as advertised. In some cases changes may be necessary and may result in some combinations being unavailable, for example as a result of student feedback, timetabling, Professional Statutory and Regulatory Bodies' (PSRB) requirements, staff changes and new research. Not all optional modules are available every year.
In this module, the anatomy of the human body is explored. The module begins with an overview of the components of the eleven systems of the human body. The various types of body tissue are examined and their structure-function relationships investigated. Several body systems are explored in detail for example skeletal system, urinary system, integumentary (skin) system and muscular system. Finally, vision and hearing are discussed.
In the laboratory, students will investigate blood, with emphasis on staining techniques used in order to identify types of white blood cells. In workshops, posters are prepared and PowerPoint presentations used to consolidate understanding of lecture material. A laboratory revision session is provided which enables examination of a range of tissues and organs, designed to aid revision of the major topics covered in this module.
Introducing the nature of biological diversity and the patterns of distribution of organisms on global, regional and ecosystem scales, students discover the underlying causes of the observed biodiversity patterns and the main current threat to biodiversity. The reasons why species become extinct is explored and then the reasons why species should be preserved. Students will be able to outline the criteria that can be used to identify species and areas of high conservation importance.
Fieldtrips take place on campus, where students will look at sampling techniques and biodiversity, and to sites of special conservation interest in the Arnside and Silverdale AONB. There will also be an excursion to Blackpool Zoo.
This module is an introduction to the structure and function of prokaryotic and eukaryotic cells. The first five lectures of the module will examine the main components of prokaryotic and eukaryotic cells and the way eukaryotic cells are organized into tissues. The techniques used to study cells will also be reviewed. The next two lectures will look in detail at the structure and function of mitochondria and chloroplasts and the chemiosmotic theory. This will be followed by a lecture on the way cells are organised into tissues. The final four lectures will cover reproduction in prokaryotic and eukaryotic cells and the eukaryotic cell cycle. The lectures are supplemented by two practical sessions, the first on light microscopic technique and the second covering organelle isolation
This module addresses a range of processes that are fundamental to plant and animal development. The module will provide an introduction to animal embryogenesis, including the cleavage, gastrulation and organogenesis stages. Students will discover how polarity and pattern arise, along with mechanisms for cellular determination and differentiation. Later lectures will address plant embryogenesis and reproductive development. Students will learn how developmental processes are regulated internally and externally, through developmental regulatory genes and via influences from the external environment.
Students will gain the ability to compare and contrast strategies for development in animals and plants and to identify the major structures present in animal embryos. They will develop transferable skills such as an awareness of lab safety, competent use of a compound microscope, and experience of data collection and reporting.
Introducing students to the development of evolutionary theory and the evidence for the evolutionary processes of natural and sexual selection, this module examines the evolutionary relationships of the major groups of organisms, and deals with speciation and human evolution.
Using specific examples of animal behaviour, we demonstrate how an understanding of natural and sexual selection can explain the diverse evolution of body structures, reproductive behaviours and life-history strategies.
This module examines the way in which genetic information, encoded by the DNA of the cell, is replicated and passed on to each new generation of cells and whole individuals. The ways in which genes affect the characteristics of a cell or organism are explored at the molecular level. The fundamentals of these processes are very similar in all organisms but the unique features of eukaryotes and prokaryotes are highlighted. We will also examine the consequences of mutation and look at some examples of diseases and conditions caused by defective genes and alterations in chromosome number or structure.
The global environment and human society are now threatened by unprecedented changes resulting from human activities such as intensive agriculture and fossil fuel combustion, as well as facing natural hazards like volcanic eruptions and climatic extremes. This module introduces you to the major contemporary environmental issues and the complexities associated with researching, explaining and managing the Earth's environment. It provides a broad foundation in the skills required to contribute to future understanding and management of global environmental challenges. You will gain a clearer understanding of the connections between social, environmental and biotic processes and explore possible solutions for key environmental issues.
The aim of this module is to introduce students to the mechanisms cells use to communicate with one another.
The structure and functions of several endocrine (hormone-producing) glands are investigated in lectures and workshops, such as the pituitary, thyroid and adrenal glands. The hormonal control of human reproduction is explained, followed by investigating the topic of fertilisation. Early embryogenesis is compared in a variety of organisms, supported by a laboratory session which enables a comparison of early embryogenesis in starfish, frog and chick. Finally, human pregnancy, development and fertility are examined with emphasis upon causes and treatment of infertility.
This module will provide you with an understanding of how and why organisms are classified and named, and an appreciation of how identification keys are constructed and used. You will learn to construct simple classificatory and evolutionary trees, and to indicate their significance.
Evolutionary relationships will be evaluated using anatomical and other characteristics, and the distinctive features of major groups of animals will be outlined so that you are able to indicate the functional, evolutionary, and, in some cases, ecological and economic significance of them.
Practical sessions will enable you to take part in the identification of both invertebrate and vertebrate groups.
This module provides an introduction to the structure and function of aquatic food webs in freshwater, estuarine and marine environments. Emphasis is placed on the role of nutrients (bottom-up control) and predation (top-down control) on participating organisms in their freshwater, estuarine, and marine environments. Students will understand the importance of algae, whether planktonic or attached, in the primary productivity of aquatic ecosystems and how this is affected by nutrient concentration and composition. The way in which anthropogenic influences can alter the balance of aquatic food webs, and the subsequent problems which may arise, is discussed.
There will be practical sessions on areas such as algae, zooplankton and macroinvertebrates. Workshops will cover the analysis of data using excel, and the characteristics of lake trophic status in The Lake District.
Explore the flora, fauna and soil ecology of Cornwall, and learn about the conservation efforts to restore the region’s natural habitats. Students will have guided tours of the Eden Project and gain practical field work skills through undertaking plant and nesting bird surveys. Excursions will give students the opportunity to undertake hands-on activities, looking at habitat degradations and restorations, and developing the ability to identify, record and characterise plant, bird and marine species.
On successful completion of this module, students will be able to use field sampling techniques to identify, classify and characterise Cornwall’s native species and habitats. Students will also understand how past and current human activity has influenced the ecology of Cornwall, and the efforts to mitigate anthropogenic impacts on the environment. Students will know how to keep a field notebook to critically observe and accurately record information and data, which they will analyse and interpret as part of a team.
Please note: Students must attend an introductory 2 hour pre-field course workshop in preparation for the module, field safety, and field notebook procedures. Students will also form groups during this session and choose research topics for the final presentations.
This module examines how the biosphere reacts to environmental change. It concentrates on the responses to changes such as increasing drought, global warming, ozone depletion, and air pollution. Emphasis is placed on understanding plants as the driving force for the effects of environment change on other organisms within terrestrial ecosystems. This will range from consideration of changes in complex natural ecosystems through to effects on humans, through changes in global food production. The module will also consider the direct effects of environmental change on human populations.
You will learn to describe the effects of global warming and pollution on plants and terrestrial ecosystems as well as the links between basic plant physiology and the consequences of environmental change. We also explore the direct and indirect effects of environmental change on human populations. You will take part in workshops that look at the effects of the environment on carbon fixation and water use, and human health and environment change.
Taking a holistic approach to the study of marine and estuarine ecosystems and melding biology with ecology and environmental science, this module will enhance students’ knowledge in a range of areas spanning from the fundamentals of water as a medium for life and how organisms are adapted to particular challenges, through to whole ecosystem productivity, using the Lancaster locale to inform and exemplify.
Students will discover the heterogeneity of marine and estuarine environments. They will develop an ability to identify the specific challenges faced by organisms living in water, especially with regard to salinity. Additionally, the module will enhance students’ awareness of ecophysiological structure and zonation, and will introduce processes such as aquatic primary production and energy transfer.
Students will explore the diversity of habitats and organisms living in the Doñana natural area and the actions that can be taken to promote the conservation of this biodiversity. They will gain practical experience of the identification, critical observation and accurate recording of plants, invertebrates and birds.
The unique understanding gained by such practical experience will give students an important advantage when it comes to gaining employment in this field.
By the end of this module, students will be able to describe the physical nature of a variety of habitats and the characteristic species associated with them and identify, classify and comment on specimens of plants and animals from those habitats. They will also learn to describe how the distribution and abundance of different plants and animals is determined by the physical conditions and biotic factors in their environments.
In addition to this, students will indicate how the anatomical, physiological and behavioural features of selected organisms are adapted to different habitats and modes of life. Another topic covered will be how human activities affect biological communities, and what can be done to conserve those communities.
This module contains a series of four interactive workshops that cover all stages of career planning from exploring options to succeeding at recruitment and selection. It provides knowledge of the graduate labour market and techniques for developing personalised career plans to successfully and confidently transition into work or further study.
Students will also come to develop an understanding of the benefits of professional networking, and how to access opportunities for connecting with others in a professional manner. To this end, an effort to create a 'personal brand', which includes an awareness of both strengths and areas for development, is encouraged and can be extremely beneficial after graduation.
The module will be delivered during the summer term (weeks 5 to 8) through a number of timetabled sessions which will help to accommodate a variety of other commitments such as dissertations and summer exams.
Evolution is the fundamental concept in biology and an understanding of its processes and effects are important for biologists in all disciplines. The module aims to show how the morphology and behaviour of animals and plants is adapted to their environment through interactions with their own and other species, including competitors, parasites, predators and prey, and relatives. Students will explore the concept of adaptation to natural and sexual selection pressures at the level of the individual and the effects on the wider population.
Students will gain the ability to describe the roles that variation, heritability and selection play in the evolutionary process, along with a developed understanding of how numerical changes in population occur, and enhanced knowledge of how to analyse such shifts in order to make predictions about future changes. This module will also reinforce students’ understanding of the application of theoretical models, the changing effects of costs and behaviours due to circumstance, and how conflicts of interest might influence the reproductive success of individuals.
Students taking this module will gain a range of transferable skills including: report writing, data analysis and presentation, team working, verbal presentation, summarising technical texts and design of scientific enquiries.
The aim of this module is to introduce students to understanding the scientific method, designing experiments, and collecting data in an unbiased scientific manner, analysing it using robust statistical techniques and presenting findings in a clear and concise form. Students will be provided with the skills they will need to successfully complete their dissertation projects. They are encouraged to critically appraise information, conduct a wide range of statistical analyses and to present and critically analyse data.
Students will be able to relate the notion of the scientific method to their own scientific endeavour, and will gain the level of knowledge required to measure, describe and discuss the varieties of environmental and ecological systems in the study of natural systems.
Students will learn to design and execute experiments which distinguish effectively between variation due to experimental effects and underlying uncontrolled variation, and will also understand the application of statistical tests to analyse data, taking into account the underlying assumptions of those tests, as well as the uses of computer based statistical packages, such as SPSSx) to analyse data. Critical skills developed on this module will enable students to report their findings in a style appropriate for their audience.
Employers expect graduate biologists, especially those aiming for careers as field biologists or ecologists, to have gained experience of basic field biology skills and common survey techniques. This module offers an introduction to the fieldwork and methodology relevant for conducting ecological surveys. Students are taken through a habitat and biodiversity survey, and will develop skills in several areas, such as species identification, monitoring bird breeding parameters, moth trapping, and small mammal trapping.
The weeklong intensive course will take place in the local area and the work will mostly be conducted outdoors. Students will take part in two off-campus excursions, for example, to a species-rich meadow in the Yorkshire Dales, and to sites of highly diverse insect communities in the Morecambe Bay region to see Fritillary butterflies. They will also gain the ability to identify appropriate sampling methods and apply them in the field, as well as developing transferable abilities such as report writing, teamwork, observation skills and safety awareness.
The aim of this module is to provide students with the opportunity to design and undertake a project from start to finish, which will involve working as part of a team and collecting individual and group data in an unbiased scientific manner. Students will develop the ability to distinguish effectively between variation due to robust effects and underlying uncontrolled variation, whilst statistically analysing and presenting their findings to the class in a suitable format.
By the end of the module, students will have the ability to critically appraise information and report the findings of their scientific endeavours to different audiences using a variety of methods, including scientific reports and PowerPoint presentations, in addition to developing a range of generic and specialist skills gained that will be useful in a competitive job market.
Students will be able to understand and integrate information from a variety of sources, whilst utilising skills of written critique of primary and secondary literature. They will also be developed in the ability to interrogate bibliographic databases and summarise pertinent information.
Vertebrates (including fish, amphibians, reptiles, birds and mammals) display a staggering diversity of shapes and sizes, and are adapted to a wide array of environments, from hot deserts to freezing oceans. The aim of this module is to introduce this broad range of forms and functions, putting physiological and behavioural processes firmly within a whole organism and evolutionary context.
This module will introduce students to the major vertebrate taxonomic groups: it will explore how they have evolved to exploit different environmental niches on land, in water and in flight; and how their anatomy, reproduction, thermoregulation, etc. have all become fine-tuned to cope with the challenges of their evolved lifestyle. Students will be able to apply their general knowledge of vertebrate biology to species-specific examples: comparing and contrasting different forms and functions; and critically evaluating hypotheses proposed in order to explain vertebrate diversity.
They will also gain more generic transferable skills such as critical discussion, application of knowledge to new situations, data analysis and report writing. Throughout the module, students will consider how form, function and strategy will impact the vulnerability of vertebrates to on-going environmental change.
This module explores the interactions that take place both within and between cells and which allow them to perform their function in the whole organism. Students will consider five key topics within cell biology:
This laboratory-based module provides both a theoretical and experimental basis for further studies and research in cell biology. It will enable students to gain experience in a range of laboratory techniques including: handling mammalian cells, cell signalling, identification of subcellular molecular localisation by immunofluorescent microscopy, and cell cycle analysis by flow cytometry.
The module is delivered through mixed media platforms such as lectures and videos, with consolidation of the practicals in a final overarching data analysis workshop. Students will be able to apply these skills to design and carry out experiments for their own subsequent research projects.
This module introduces advanced techniques of eukaryotic recombinant DNA technology, DNA sequencing, genomics and functional genomics. Bioinformatics, the computer-based analysis of data that result from genome sequencing and the genomic approaches to understanding gene function and expression are introduced and developed in the workshops. The module practicals provide hands-on experience of quantitative gene expression analysis employing widely used state of the art PCR (polymerase chain reaction) based technology.
Students will gain knowledge and understanding of these techniques, which will provide the basis for the informed reading and comprehension of primary experimental biological research literature required for subsequent undergraduate research projects. These technologies underpin an increasing proportion of modern biological research, particularly in the Biomedical disciplines and form the basis for rapidly developing applications in the field of personalised medicine.
Environmental Physiology "crosses the great divide" between animal and plant biology. The scope of this module is broad, extending from the consequences of environmental change on human health to communication between plants. It explores the whole-organism responses of animals and plants to light, to pollution and to disease-causing micro-organisms. It goes on to consider how such responses are controlled and co-ordinated, and how information is communicated between individuals in both animals and plants.
The unifying theme of this module is the central role of physiology in determining a wide range of biological responses, with the overall aim of providing an integrated understanding of the mechanisms by which both animals and plants cope with their environment. Students will gain an appreciation of the complex interactions between plants and animals and their natural environments, and particularly the notion of phenotypic plasticity. Practical work will develop laboratory skills, and assessment will develop skills in literature searching, data analysis, writing and argument.
Students will develop a sophisticated skillset, including the ability to describe mechanisms by which plants and animals perceive environmental signals and co-ordinate their responses to them, as well as being able to describe the effects of ultraviolet light on animals and plants and the mechanisms for protection from its damaging effects. In addition, students will gain the necessary experience required to show how various environmental pollutants affect the health of plants and humans, and will be knowledgeable of the various forms of innate immunity in animals, whilst gaining awareness of the conservation of anti-microbial defence mechanisms during evolution. Finally, students will be able to explain how plants resist attack by herbivorous insects and pathogenic microorganisms.
This module takes a molecular approach to understanding heredity and gene function in organisms ranging from bacteria to man. It begins by reviewing genome diversity and how genomes are replicated accurately, comparing and contrasting replication processes in bacteria and man. The module discusses in detail molecular mechanisms, particularly those that ensure information encoded in the genome is transcribed and translated appropriately to produce cellular proteins.
Students will focus on the importance of maintaining genome stability and damaging effects of mutations in the genome on human health. Examples are drawn from a range of inherited genetic diseases such as phenylketonuria and sickle cell anaemia, paying particular focus to how mutations in key genes are driving cancer development.
Teaching is delivered by a series of lectures supported by varied practical work, workshops, guided reading and online resources. Laboratory practicals include investigating how exposure of bacteria to ultraviolet light induces mutations – providing a model for understanding how skin cancer may develop as a consequence of excessive sun exposure.
Recent emphasis on global change and biodiversity has raised awareness of the importance of species and their interactions in determining how sustainable our lifestyle is. This module explores the factors that drive population and community dynamics, with a strong focus on multi-trophic interactions and terrestrial ecosystems.
Students will be introduced to population ecology and will discover the abiotic factors that regulate populations, life history strategies of populations, competitive interactions within populations, and meta-population dynamics, in addition to an understanding of how species interact both within and across trophic levels. The module exposes students to the belowground system and will look at how the species interactions and soil communities discussed impact on community structure and dynamics. The module aims to give students a fundamental understanding of ecology - such knowledge is essential for informing conservation and sustainable land-use practices, and efforts to mitigate climate change.
In order to complete this module, students will develop the ability to outline the primary factors that drive population dynamics, whilst critically discussing examples, and will reinforce their understanding of the implications of species interactions for community dynamics. Students will also gain a critical awareness of biotic responses and their contribution to climate change.
This module aims to provide students with broad understanding of the discipline of conservation biology. The module starts by defining biodiversity, discussing its distribution in space and time, and its value to humankind, before examining the key anthropogenic threats driving recent enhanced rates of biodiversity loss. The module then focuses on the challenges for conservation of biodiversity at several levels of the biological hierarchy: genes, species, communities and ecosystems, and the techniques used by conservationists at these levels. The final part of the module looks at the practice of conservation through discussion of prioritisation, reserve design and national and international conservation policy and regulation.
Students will develop a range of skills including the ability to discuss the principle threats to global biodiversity and the rationale for biodiversity conservation, in addition to application of a range of metrics to quantify biodiversity. Students will gain a critical understanding of the various approaches to conserving genetic, species and ecosystem diversity, as well as an enhanced knowledge of quantification of popularisation approaches to prioritisation of conservation goals, and how nature reserves can be designed to improve conservation potential.
You will spend this year working in a graduate-level placement role. This is an opportunity to gain experience in an industry or sector that you might be considering working in once you graduate.
Our Careers and Placements Team will support you during your placement with online contact and learning resources.
You will undertake a work-based learning module during your placement year which will enable you to reflect on the value of the placement experience and to consider what impact it has on your future career plans.
This module explores how and why animals behave in the way that they do, building on many of the major themes of the Evolution module to highlight the links between behaviour, ecology and evolution. The central aim will be to understand the fitness consequences of behaviour - by focusing on three of the most important topics in behavioural research (reproduction, sociality and communication), we will investigate how the behaviour of an individual has evolved to maximise its survival and reproductive success.
Students will gain an understanding of how and why we study animal behaviour, at the same time developing their appreciation of scientific best practice. Students will be encouraged to relate specific knowledge to broader issues in ecology and evolution, and to critically reflect on what animal behaviour can tell us about behaviour in our own species. Additionally, students will be able to describe what behaviour actually is and understand the major factors that influence how animals (including humans) behave. Students will also develop the level of knowledge necessary to discuss a wide diversity of animal behaviours in a broad range of species, and describe the major approaches to understanding behaviour and apply Tinbergen's four questions to behavioural processes. Students will gain an enhanced understanding in a range of areas, including the importance of both nature and nurture in the evolution of behaviour, the ecological pressures that shape behaviour, the importance of the fitness consequences of behaviour at the individual level and the concepts of kin selection and inclusive fitness
The dissertation project is an individual and individually supervised extensive project ending in submission of a substantial dissertation report. Students will choose from a set of dissertation research areas or topics based on a LEC-wide list compiled by the module conveyor. There will be regular meetings with dissertation supervisor, and students will develop a specific dissertation topic, along with research questions, aims, objectives and methods. This will be followed by a period of background reading, discussion and planning, before their dissertation drafts are analysed, marked and a final draft of up to 10,000 is submitted in week 11 of the term.
Students must take active involvement in the module and make good use of interaction with the supervisor in order to deepen their subject specific knowledge and ability to work independently. Depending on the discipline, style and topic, students may focus on methods, field techniques, lab techniques, or a combination of computer and software tools.
You will have the option of taking either a Dissertation or a Dissertation with External Partner. However, please note that students taking a Study Abroad year must take the Dissertation option.
For 50 years, thanks to evolutionary theory, we’ve known why we are fated to age and die, but our understanding of the mechanisms has been a lengthy evolution in itself. Only relatively recently, with the use of modern molecular biology tools, do we begin to understand the mechanistic basis of the ageing process, from early notions about rates of living to current ideas about modular yet interacting mechanisms including autophagy, protein synthesis, nutrient sensing, insulin-like signalling and disease resistance. Even now we do not clearly know what makes us age. Ageing is perhaps the most multidisciplinary area of study and is certainly one of the last great mysteries in biology.
This module introduces the area and the methodologies with which ageing is studied. Teaching is through lectures, workshops, practical work, individual and group-based coursework and private study.
This module explores some of the key roles played by ion channels and calcium ions in the communication that takes place within and between cells. The module is split into two linked themes. Firstly, an introduction to the diversity of ion channel families and their biological functions including the many different cellular processes throughout the life history of cells that are regulated by calcium ions as signals. Secondly, an investigation of the importance of ion channels and calcium signalling in animals, and human physiology in particular, using examples of diseases that are caused when ion channels malfunction (e.g. myotonia, malignant hyperthermia, sudden heart arrest caused by long QT syndrome.) or calcium signalling is disrupted (e.g. Alzheimer’s disease, polycystic kidney disease, pancreatitis). Students also gain hands-on experience of the techniques used to study ion channels and calcium signalling in cells.
The aim of this module is to illustrate some of the ways in which plants achieve this and to provide an insight into the physiological mechanisms that underlie plant ecology. Students will explore how plants respond to specific environmental cues and the ways in which they are able to adapt to a variety of stressful environments. All of these processes will be viewed from both an agricultural and an ecological perspective. Students will also gain an understanding of the environmental constraints on plant growth and productivity and an appreciation of the degree of plasticity and adaptability that plants display. They will develop an appreciation of the importance of a detailed understanding of these plant traits if we are to achieve the increases in crop productivity (through management or breeding) that will be required for food security in the face of global climate change.
This module will equip students with the ability to describe a range of features related to the subject, including the range of plant photomorphogenic and photoperiodic responses to light and their ecological significance, the response of plants and communities to high temperature and salinity, the rationale behind the use of deficit irrigation to increase water use efficiency , plant adaptations for efficient extraction of nutrients from the soil, the way in which leaves and roots function in drought-prone environments, and the regulation of growth of leaves and roots in drought-prone environments. Students will also develop the skill level required identify the practical applications of modifying plant responses to their light environment, discussing the problems posed by a hot dry climate for plant growth and functioning and the rationale for breeding/engineering plants for increased water use efficiency, in addition to gaining the necessary understanding of the cellular and whole plant tissue basis of plant drought resistance and the physiological basis of salt tolerance.
How is DNA, the fundamental building block of life, organised and expressed in different types of organisms such as bacteria and humans? Lectures comparing eukaryotic and prokaryotic gene organisation and expression, chromatin structure and DNA repair will seek to answer this question. In addition, students will study the application of genetics to science and technology during practical and workshop sessions, providing them with the opportunity to develop group and independent working skills whilst reinforcing theoretic concepts.
Plants and animals in their natural environments interact with a wide range of other living organisms. These include both beneficial interactions and damaging encounters with parasites, pathogens and herbivores. The module examines the different kinds of organisms that have evolved a parasitic lifestyle and the ways in which they parasitize their hosts. In parallel, the module will introduce the different strategies that plants and animals use to defend themselves, including the recruitment of other organisms to act as allies. The continuing conflict between hosts and parasites results in a so-called 'evolutionary arms race'.
Practical work will develop laboratory skills, and assessment will develop skills in data analysis, writing and argument. The module will also examine the evolutionary costs and benefits of defence, and the evidence for short and long-term immunological memory. Since the module is aimed primarily at addressing ecological and physiological questions rather than the biomedical aspects of parasitology, the focus will be on invertebrate rather than vertebrate hosts.
Students will be able to describe a range of subject specific topics, such as the main groups of parasitic organisms and their lifestyles; the structural and behavioural defences against parasites, pathogens and herbivores in plants and animals, and the key features of innate and adaptive immunity in plants and animals. This module will also enhance students’ ability to identify the main selective processes shaping the evolution of host resistance to parasites, along with providing explanations as to why many defence mechanisms are inducible rather than permanently expressed, and how specialist herbivores and parasites have co-evolved with their hosts to overcome resistance.
In this module students will work together as a team to propose a solution to a problem of biological relevance, for example antibiotic resistance, invasive species or healthy ageing. The solution may be a patentable, commercial product or a policy proposal. Weekly workshop sessions will be held for the whole class which will include presentations from external speakers on topics such as intellectual property, project management and negotiating skills. Each team will choose a leader who will be responsible for organising regular meetings in which ideas are developed, tasks assigned and information gathered. The team will produce a report in the form of a patent application or policy document which will form part of the module assessment. The remainder of the assessment will be based on an oral presentation. Peer-assessment will be used to adjust tutors' marks according to individual contribution to the project.
In this module, students will be shown how, through manipulation of species, communities and ecosystems, habitats can be managed in a sustainable way that preserves and enhances their aesthetic, scientific, recreational, and often utilitarian, value. The creation of new habitats will be considered, as well as management of existing areas of conservation interest. The module is largely taught by external lecturers who are directly involved in the application of ecological principles to practical problems.
Students will develop the level of ability required to describe the nature of selected habitat types, as well as explaining a series of underlying ecological processes which necessitate management. Students will also be able to identify the techniques used for conservation management specific to a range of habitat types, in addition to reinforcing a range of transferrable skills, such as the ability to present scientific data clearly and concisely, in both written and oral format. Students will learn to work autonomously as well as being involved in group work.
Join a discussion and debate where you are encouraged to critically examine primary literature and ideas on topical issues in conservation biology in the UK and globally. Gain an understanding of the key factors that constrain conservation and of the interdisciplinary nature of conservation problems in the real world.
Nervous system function, from formation in the embryo to sensory systems and the neural control of complex behaviours, is the focus of this module. The emphasis is on model systems and the use of genetic tools to elucidate developmental pathways and neural circuits. Practical exercises are used to illustrate some of the functions of nervous systems and how these can be manipulated by genetic intervention.
Students are encouraged to access and evaluate information from a variety of sources and to communicate the principles in a way that is well-organised, topical, and recognises the limits of current hypotheses. On completion of the module, students will be equipped with practical techniques including data collection, analysis and interpretation.
In this module, students will be shown how, through manipulation of species, communities and ecosystems, habitats can be managed in a sustainable way that preserves and enhances their aesthetic, scientific, recreational, and often utilitarian, value. The creation of new habitats will be considered, as well as management of existing areas of conservation interest. The module is largely taught by external lecturers who are directly involved in the application of ecological principles to practical problems.
Students will develop the level of ability required to describe the nature of selected habitat types, as well as explaining a series of underlying ecological processes which necessitate management. Students will also be able to identify the techniques used for conservation management specific to a range of habitat types, in addition to reinforcing a range of transferrable skills, such as the ability to present scientific data clearly and concisely, in both written and oral format. Students will learn to work autonomously as well as being involved in group work.
Modern resource-intensive agriculture has proved incredibly successful in delivering relatively abundant, cheap food (at least in the developed world), but sometimes at considerable environmental cost. Therefore the general public is usually keen to embrace "sustainable agriculture" but is generally unaware of the economic and food production costs of proposed changes in crop management. By emphasising the concept of crop resource use efficiency, this module focuses on the viability of less intensive agricultural systems.
Students will critically examine primary literature on topical issues concerning the sustainability of different agricultural systems. They will gain an understanding of the key factors constraining food production, and the environmental and food production consequences of different crop production systems.
In addition to gaining the ability to identify key issues affecting the sustainability of agriculture, students will critically appraise the literature on these issues, and will develop the skillset required to recognise the economic and societal problems constraining the adoption of more environmentally sustainable agriculture. Ultimately, students will gain the ability to discuss alternative scenarios and solutions for key environmental problems associated with agriculture and document said issues in a cogent and critical manner.
During this residential field course, based in Kenya, students will be given an overview of tropical ecology via a series of lectures, field exercises, workshops and debates, using the geographic, abiotic and biotic characteristics of the Rift Valley, East Africa: from aquatic ecosystems to arid savannah. They will experience ecological processes, biodiversity and conservations issues commonplace within the tropics.
Throughout the field course, students will design and conduct surveys for the following:
Students will gain a direct appreciation of the issues, problems and solutions surrounding wildlife and human conflicts at a variety of scales.
Our annual tuition fee is set for a 12-month session, starting in the October of your year of study.
Our Undergraduate Tuition Fees for 2025/26 are:
Home | International |
---|---|
£9,535 | £29,820 |
Students will be required to pay for travel to field sites and will have to purchase wet weather clothing, boots and waterproof notebooks for fieldtrips for which the estimated cost is approximately £110. The course offers optional field trips and students will have to pay for any travel and accommodation costs. If students undertake placements then they may incur additional travel costs. Students on certain modules may wish to purchase a hand lens and compass clinometer but these may be borrowed from the Department.
There may be extra costs related to your course for items such as books, stationery, printing, photocopying, binding and general subsistence on trips and visits. Following graduation, you may need to pay a subscription to a professional body for some chosen careers.
Specific additional costs for studying at Lancaster are listed below.
Lancaster is proud to be one of only a handful of UK universities to have a collegiate system. Every student belongs to a college, and all students pay a small college membership fee which supports the running of college events and activities. Students on some distance-learning courses are not liable to pay a college fee.
For students starting in 2025, the fee is £40 for undergraduates and research students and £15 for students on one-year courses.
To support your studies, you will also require access to a computer, along with reliable internet access. You will be able to access a range of software and services from a Windows, Mac, Chromebook or Linux device. For certain degree programmes, you may need a specific device, or we may provide you with a laptop and appropriate software - details of which will be available on relevant programme pages. A dedicated IT support helpdesk is available in the event of any problems.
The University provides limited financial support to assist students who do not have the required IT equipment or broadband support in place.
In addition to travel and accommodation costs, while you are studying abroad, you will need to have a passport and, depending on the country, there may be other costs such as travel documents (e.g. VISA or work permit) and any tests and vaccines that are required at the time of travel. Some countries may require proof of funds.
In addition to possible commuting costs during your placement, you may need to buy clothing that is suitable for your workplace and you may have accommodation costs. Depending on the employer and your job, you may have other costs such as copies of personal documents required by your employer for example.
The fee that you pay will depend on whether you are considered to be a home or international student. Read more about how we assign your fee status.
Home fees are subject to annual review, and may be liable to rise each year in line with UK government policy. International fees (including EU) are reviewed annually and are not fixed for the duration of your studies. Read more about fees in subsequent years.
We will charge tuition fees to Home undergraduate students on full-year study abroad/work placements in line with the maximum amounts permitted by the Department for Education. The current maximum levels are:
International students on full-year study abroad/work placements will be charged the same percentages as the standard International fee.
Please note that the maximum levels chargeable in future years may be subject to changes in Government policy.
You will be automatically considered for our main scholarships and bursaries when you apply, so there's nothing extra that you need to do.
You may be eligible for the following funding opportunities, depending on your fee status:
Unfortunately no scholarships and bursaries match your selection, but there are more listed on scholarships and bursaries page.
Scheme | Based on | Amount |
---|---|---|
Based on {{item.eligibility_basis}} | Amount {{item.amount}} |
We also have other, more specialised scholarships and bursaries - such as those for students from specific countries.
Browse Lancaster University's scholarships and bursaries.
The information on this site relates primarily to 2025/2026 entry to the University and every effort has been taken to ensure the information is correct at the time of publication.
The University will use all reasonable effort to deliver the courses as described, but the University reserves the right to make changes to advertised courses. In exceptional circumstances that are beyond the University’s reasonable control (Force Majeure Events), we may need to amend the programmes and provision advertised. In this event, the University will take reasonable steps to minimise the disruption to your studies. If a course is withdrawn or if there are any fundamental changes to your course, we will give you reasonable notice and you will be entitled to request that you are considered for an alternative course or withdraw your application. You are advised to revisit our website for up-to-date course information before you submit your application.
More information on limits to the University’s liability can be found in our legal information.
We believe in the importance of a strong and productive partnership between our students and staff. In order to ensure your time at Lancaster is a positive experience we have worked with the Students’ Union to articulate this relationship and the standards to which the University and its students aspire. View our Charter and other policies.
Take five minutes and let us show you what Lancaster has to offer, from our beautiful green campus to our colleges, teaching and sports facilities.
Most first-year undergraduate students choose to live on campus, where you’ll find accommodation to suit different preferences and budgets.
Our historic city is student-friendly and home to a diverse and welcoming community. Beyond the city you'll find a stunning coastline and the picturesque Lake District.