Learning on Location
As a part of our Geography degrees, you will have the opportunity to conduct fieldwork in a variety of locations, both in the UK and abroad. Some of the destinations open to our students are:
8th for Geography
The Guardian University Guide (2024)
12th for Geography and Environmental Science
The Times and Sunday Times Good University Guide (2024)
Joint 96th for Environmental Science in the QS University World Rankings by Subject 2024
Discover Geography at Lancaster and overseas with our exciting Study Abroad programme. Explore a range of amazing locations and learn from world-renowned lecturers.
Geography is a distinctive subject: it studies our world in a vast range of areas. Our Study Abroad programme provides a unique first-hand experience of work and life in a different country. You will spend a year exploring the diverse physical environments, societies and culture in North America or Australasia, as well as benefiting from our world-class teaching at the state-of-the-art Lancaster Environment Centre (LEC).
While studying at LEC, you will have access to a host of new facilities including teaching and research labs, computer systems and software, and even our very own weather monitoring station! Working in comfortable class sizes, you will have the opportunity to get to know your lecturers personally, enabling you to benefit from their expert knowledge and helpful one-to-one advice.
Modules taken at Lancaster will make extensive use of the rural settings of the north and the bustling cities of Liverpool and Manchester, allowing you to explore some of the UK’s most unique areas of geographic interest. You will gain a wealth of hands-on experience with field trips to places such as the Yorkshire Dales, Cumbrian coast and Lake District, as well as to international locations including Croatia and Switzerland.
You will develop a fundamental understanding of human, physical and environmental geography in your first year Geography modules. These modules equip you with a well-rounded introduction to some of the key themes of geography, as well as providing you with some of the key skills used by geographers to analyse problems in both the physical and human aspects of the discipline.
Specialisation begins in second year, enabling you to choose topics that match your interests. Core modules will focus on practical work, giving you a range of analytical and research project skills, while optional modules feature an exciting field trip to Spain.
You will spend your third year studying at one of our overseas partner universities building your global outlook and connectivity.
In your final year, you will undertake a dissertation project, guided by an academic supervisor, which offers a chance to perform original geographical research on a topic of your choice. While completing the dissertation, you will use the key research, analytical and academic writing skills you have learnt throughout your degree. You will be offered further optional module choices with an emphasis on both human and physical geography, and there will be fieldwork opportunities in a variety of locations.
Lancaster University will make reasonable endeavours to place students at an approved overseas partner university that offers appropriate modules which contribute credit to your Lancaster degree. Occasionally places overseas may not be available for all students who want to study abroad or the place at the partner university may be withdrawn if core modules are unavailable. If you are not offered a place to study overseas, you will be able to transfer to the equivalent standard degree scheme and would complete your studies at Lancaster.
Lancaster University cannot accept responsibility for any financial aspects of the year or term abroad.
This programme has been accredited by the Royal Geographical Society (with IBG). Accreditation recognises programmes that deliver the geographical knowledge, understanding, skills, approaches and professional attributes expected of high-quality geography graduates, as recorded in the QAA Subject Benchmark Statement for Geography.
Learn more about the Royal Geographical Society accreditationGeography helps us to understand the world around us, from the study of cultures and people, to the processes going on beneath our feet that shape the landscapes we live in. A degree in geography will help you get to grips with the many challenges we face with a growing population and an increasingly precarious climate situation by providing you with the opportunity to tackle a wide variety of complex issues. With such a diverse curriculum of topics, our geography graduates go on to work in a diverse range of positions such as Planning Officers, Environmental Consultants, Landscape Architects, Geospatial Analyst, Hydrologist, Emergency Planning and many more. Geographers are also well placed to secure roles and opportunities in sectors that might not be obvious such as marketing and sales, teaching, travel and tourism, and commercial business. This is down to your transferable skills in communication, software competencies, project management and data analysis. Graduates from our courses are also well-paid, with the median starting salary of graduates from Lancaster Environment Centre being £24,347 (HESA Graduate Outcomes Survey 2023).
Here are just some of the roles that our BSc and MSci Geography students have progressed into upon graduating:
Lancaster University is dedicated to ensuring you not only gain a highly reputable degree, you also graduate with the relevant life and work based skills. We are unique in that every student is eligible to participate in The Lancaster Award which offers you the opportunity to complete key activities such as work experience, employability/career development, campus community and social development. Visit our Employability section for full details.
A Level AAB
Required Subjects A level Geography is recommended, or alternatively one of the following subjects: Anthropology, Biology, Chemistry, Classics, Economics, English Literature, Environmental Studies, Geology, History, Mathematics, Philosophy, Physics, Psychology, Religious Studies, Sociology, World Development.
GCSE Mathematics grade C or 4, English Language grade C or 4
IELTS 6.5 overall with at least 5.5 in each component. For other English language qualifications we accept, please see our English language requirements webpages.
International Baccalaureate 35 points overall with 16 points from the best 3 Higher Level subjects including Geography or alternative cognate subject at HL grade 6
BTEC Distinction, Distinction, Distinction in a related subject but may additionally require a supporting A level in Geography or alternative cognate subject at grade A. Please contact the Admissions Team for further advice.
We welcome applications from students with a range of alternative UK and international qualifications, including combinations of qualification. Further guidance on admission to the University, including other qualifications that we accept, frequently asked questions and information on applying, can be found on our general admissions webpages.
Contact Admissions Team + 44 (0) 1524 592028 or via ugadmissions@lancaster.ac.uk
Delivered in partnership with INTO Lancaster University, our one-year tailored foundation pathways are designed to improve your subject knowledge and English language skills to the level required by a range of Lancaster University degrees. Visit the INTO Lancaster University website for more details and a list of eligible degrees you can progress onto.
Contextual admissions could help you gain a place at university if you have faced additional challenges during your education which might have impacted your results. Visit our contextual admissions page to find out about how this works and whether you could be eligible.
Lancaster University offers a range of programmes, some of which follow a structured study programme, and some which offer the chance for you to devise a more flexible programme to complement your main specialism.
Information contained on the website with respect to modules is correct at the time of publication, and the University will make every reasonable effort to offer modules as advertised. In some cases changes may be necessary and may result in some combinations being unavailable, for example as a result of student feedback, timetabling, Professional Statutory and Regulatory Bodies' (PSRB) requirements, staff changes and new research. Not all optional modules are available every year.
This module provides an introduction to environmental processes and their impacts in a variety of different environments. We discuss the physical processes governing the Earth's global climate system and their influence on recent and future patterns of climate and environmental change. We investigate the Earth’s surface materials and the laws that govern the behaviour of fluids, and how these affect environmental flow and fluid transport processes. We also explore the processes which influence the development of soils and associated ecosystems at the land surface, including deposition and erosion processes.
This module provides an introduction to the skills used by geographers to analyse problems in both human and physical geography. The module begins by reviewing the principles of cartography and recent developments in the electronic delivery of map-based information through mobile devices and web-based services. This is followed by an introduction to Geographic Information Systems (GIS) which provide facilities for the capture, storage, analysis and display of spatially-referenced information. Later in the module we introduce remote sensing and explain its relationship to GIS. We also consider quantitative and qualitative techniques of analysis (which are taught within the context of contemporary conceptual approaches), with emphasis placed on the study of both environmental and societal processes.
The global environment and human society are now threatened by unprecedented changes resulting from human activities such as intensive agriculture and fossil fuel combustion, as well as facing natural hazards like volcanic eruptions and climatic extremes. This module introduces you to the major contemporary environmental issues and the complexities associated with researching, explaining and managing the Earth's environment. It provides a broad foundation in the skills required to contribute to future understanding and management of global environmental challenges. You will gain a clearer understanding of the connections between social, environmental and biotic processes and explore possible solutions for key environmental issues.
Introducing you to contemporary human geography, this module focuses on the interactions between society and space, and between people and places at a variety of spatial scales and in different parts of the globe. We introduce the key processes driving geographical change affecting society, economies, the environment, and culture. We critically analyse relevant issues using theoretical models, with examples from across the world. The module encourages you to think critically, argue coherently, appraise published material, and relate real world issues to relevant theoretical frameworks.
Introducing the nature of biological diversity and the patterns of distribution of organisms on global, regional and ecosystem scales, students discover the underlying causes of the observed biodiversity patterns and the main current threat to biodiversity. The reasons why species become extinct is explored and then the reasons why species should be preserved. Students will be able to outline the criteria that can be used to identify species and areas of high conservation importance.
Fieldtrips take place on campus, where students will look at sampling techniques and biodiversity, and to sites of special conservation interest in the Arnside and Silverdale AONB. There will also be an excursion to Blackpool Zoo.
Billions of people are at risk from natural hazards, and the cost of natural disasters to the global economy is steadily increasing. This module examines the distribution of, and hazards associated with, volcanic eruptions, earthquakes, tsunamis, hurricanes, tornadoes and floods. The underlying geological and meteorological processes are described, along with the most commonly-used intensity scales and monitoring and forecasting methods. Students will then consider how human vulnerability to these hazards can be reduced, drawing upon risk mitigation case studies from around the world.
In the practicals, students will apply simple equations and measurements from a variety of maps and graphs to understand and quantify concepts such as scale, speed and intensity of hazardous phenomena. They will be taught to contour spatial data by hand, and interpret the deformation of a volcano in terms of magma chamber depth. Students will learn about disaster preparedness through playing a team-based game, and will consider a wide range of potential careers in which knowledge of natural hazards can be applied.
The coursework will develop students’ scientific writing skills and ability to integrate their own figures and interpretations with information derived from their background reading.
Being a Geographer in the contemporary world means engaging critically with questions about how geographical knowledge is produced and applied, and developing skills that can transfer beyond academic settings during and after life at University. This module, which involves a programme of tutorials, lectures and online learning activities, focuses on these aspects of your development as a Geographer. It considers, first, a series of issues that provide a way of looking critically at what Geography is now, as well as understanding how it has developed over time and the intense debates that have periodically erupted about its practice, politics and ethics. This includes engaging with racism and calls for decolonising the geography curriculum; gender equality and inclusion of marginalised forms of knowledge; and ethical responsibilities in relation to injustice and harm to both humans and non-humans. These broad issues are then connected through applying ethical principles and practical skills to being a geographer, and specifically in designing research and producing new geographical knowledge. By the end of this course, you will be able to critically engage with contemporary ethical issues for the discipline of geography, and display an understanding of the history of the development of geographical knowledge and practice, and its relevance to contemporary debates.
This module contains a series of four interactive workshops that cover all stages of career planning from exploring options to succeeding at recruitment and selection. It provides knowledge of the graduate labour market and techniques for developing personalised career plans to successfully and confidently transition into work or further study.
Students will also come to develop an understanding of the benefits of professional networking, and how to access opportunities for connecting with others in a professional manner. To this end, an effort to create a 'personal brand', which includes an awareness of both strengths and areas for development, is encouraged and can be extremely beneficial after graduation.
The module will be delivered during the summer term (weeks 5 to 8) through a number of timetabled sessions which will help to accommodate a variety of other commitments such as dissertations and summer exams.
This module will consist of lecture material and workshops where you will learn about a range of human geography research methods, their merits and disadvantages, and the appropriate research contexts in which to apply them. You will be introduced to a range of research methods and designs, learning how to apply your knowledge by carrying out your own research project. Workshops will explore types of methods you might use, including interviews, focus groups, ethnography and visual methods. By the end of this course, you will be able to utilise a variety of methodological approaches to frame human geographical enquiry, and understand the strengths and limitations of each of the approaches, techniques, and tools studied. You will be able to apply this understanding to interpret data outcomes in a relevant and appropriate manner within the context of Human Geography.
This module will address data collection and analysis through a series of practical classes on Physical Geography research methods. This course will cover data collection techniques using observations, measurements and experimental approaches in both the field and the laboratory. Sessions on data handling skills will allow students to analyse and interpret the data obtained, whilst a session on writing techniques will allow students to understand how data findings can be communicated effectively through writing. Data and learning obtained throughout the course will then be used to produce a short research paper as a coursework assignment. After completing this course, you will have a working knowledge of how to utilise a variety of methodological approaches to physical geographical enquiry, be confident in using a range of statistical techniques for data processing and analysis, and understand the strengths and limitations of each of the techniques studied.
More data has been generated in the last 2 years than over whole history of humanity prior to this. Of this data, 80% has spatial content. This module is about understanding properties of spatial data, whether derived from the map, an archive or the field or from space. The module will explore how these data are represented in computer systems and how, through spatial integration, new forms of information may be derived. There will be a focus on major sources of spatial data (topographic, environmental, and socio-economic) and their properties, major forms of analyses based on spatial relationships, and on effective communication of spatial data through adherence to principles of map design.
Students will develop an understanding of what makes spatial data special; this will be taught through exposure to data from a variety of primary, secondary, contemporary and historic data across the breadth of the geographic discipline. The module will introduce common forms of spatial analysis and will provide an understanding of which to use under given the situations. Students will learn the principles of map design and effective cartographic communication, as well as gaining practical experience of critiquing digital outputs. Finally, the module will offer students significant 'hands-on' experience of using state-of-the-art GIS software to capture, integrate, analyse and present geographic information.
This module provides a deeper understanding of atmospheric physics and chemistry, and begins by laying the foundations with the physical properties of the atmosphere and how they affect the movement of air. A major objective is to bring familiarity with meteorological analyses and forecasts. The module covers topics varying from small scale flow in the atmospheric boundary layer affecting pollutant transport to global scale circulation of the atmosphere including important phenomena such as monsoons and El Niño.
Practical sessions and a field trip to the Hazelrigg meteorological station will enable students to gain familiarity with mid-latitude synoptic systems, cyclones and fronts. This is built on by giving students sufficient knowledge about the chemical composition of the Earth's atmosphere, of the fluxes of C, S and N to and from the atmosphere and of the main chemical processes that occur in the atmosphere to allow them to understand how the Earth's atmosphere 'works' chemically within the framework of physical process already covered.
Successful completion of this module will show evidence of students’ ability to describe the structure and behaviour of the atmosphere with reference to meteorological observations and pathways of atmospheric transport from analysis of meteorological charts, in addition to the range of skills required to draw schematic diagrams of the general tropospheric circulation, whilst identifying the major processes (and underlying forces) that drive this circulation. Students will gain knowledge of the methods necessary to calculate atmospheric quantities, such as potential temperature, and use the results of these calculations to describe the state of the atmosphere. Students will also be equipped with the level of understanding needed to list the components of the unpolluted troposphere, including the trace gases of chemical significance, and draw annotated schematic diagrams of the atmospheric cycles of carbon, nitrogen, and sulphur.
The module aims to introduce concepts, plus measurement and analytical techniques used by professional hydrologists to solve water-related problems in catchments (notably flood forecasting and water quality remediation). Through a series of lectures and workshops, students can expect to study topics including the processes, measurement and analysis of rainfall, evapotranspiration and water quality measurement and treatment.
The module aims to develop higher level scientific skills in measuring the natural environment, quantifying dynamic processes numerically and digesting scientific literature. Students will gain the skillset required to describe catchment hydrological processes in a quantitative manner, therefore utilising a developed understanding of fundamental hydrological processes, their field measurement ('hydrometry') and basic aspects of dynamic catchment modelling. Additionally, students will gain a range of transferrable academic skills, such as the ability to use data and basic models to derive solutions, and applying subject-specific literature to help understand theory and limitations of theory, measurements and models.
Introducing cultural geography, this module addresses culture from a geographical perspective while, at the same time, studies space and the spatial from a cultural point of view. Students will explore the importance of variegated representations such as cultural materials, texts, art, landscapes, everyday objects, performances, and will discover how they interact and impact upon race, class, gender and sexuality. The module’s topics will include theories of power and nature, as well as teaching an appreciation of culture, nature, nation, cosmopolitanism, multiculturalism, community, colonialism and post-colonialism.
Students will develop skills such as the critical analysis of the concepts of landscape, place, space, scale and body. They should understand how to evaluate and apply this knowledge in a working environment, as well as gaining the ability to distinguish and criticise different theoretical traditions in cultural geography, and contemporary debates in cultural geography in relation to previous research traditions in the discipline. The module will provide relevant literature in geography and the social sciences and will ask students to apply it selectively to the methodologies at the core of specific assessments.
The relation between theories and practices of development will be explored in the module, as well as how these have changed over time. This evolution will be placed within the context of wider changes in global political economy. The ways in which development interventions have been contested on the ground while the concept of development has been subject to challenge intellectually will also be explored.
This module will explain the different approaches towards addressing development issues and the divergent understandings of the means and goals of development that these reflect. The way in which particular places can or cannot be placed into a geographical categories such as ‘developed countries’ or ‘Global South’ will be discussed.
Students will learn about some key challenges (e.g., poverty, inequality, environmental change) commonly defined as ‘development’ issues, and the ways in which ‘development’ initiatives seek to address these problems. They shall then critically evaluate the differential impacts (e.g., along gender lines, or rural vs. urban areas) these initiatives may have. Finally, they will build on their fieldwork experience by designing a field trip on a similar theme to a new location.
The provisioning of affordable, low carbon and secure energy is a central challenge for the UK Government. This module provides an overview of energy technologies and the energy system within the UK. Students will focus on each of the key energy technologies learning how to detail its importance, its forms and uses, how much is produced, and its cost and environmental impact. Relevant policies and its current role in the energy mix will be outlined while energy distribution networks, overall policy drivers and future energy mixes will also be explored.
This module will equip the students with an understanding of the economic, political, technological, resource and environmental factors that affect decision making, which while specific to energy are applicable to the provisioning of other resources. It will offer the opportunity to think broadly across UK energy provisions and options for the future. The students will also get the chance to build on their numerical skills and understanding of energy units. They will also critically evaluate the importance of competing factors and summarise a complex concept in an easy to interpret infographic format.
This ‘hands on’ module provides an exciting opportunity for you to put your geographical skills to work in a real-life classroom setting and to gain some valuable work experience. We organise for you to spend half a day per week in a local primary or secondary school for a whole term so that you can gain first-hand experience as a classroom assistant and learn how Geography (or a related discipline) is communicated in a school setting. Not only is this module a great choice for anyone considering a career in teaching, but it also provides an excellent opportunity to escape from the lecture theatre and learn in a real-world environment. You’ll come back from your experiences as a confident communicator who is well versed in the latest debates in Geography and Education.
Evolution is the fundamental concept in biology and an understanding of its processes and effects are important for biologists in all disciplines. The module aims to show how the morphology and behaviour of animals and plants is adapted to their environment through interactions with their own and other species, including competitors, parasites, predators and prey, and relatives. Students will explore the concept of adaptation to natural and sexual selection pressures at the level of the individual and the effects on the wider population.
Students will gain the ability to describe the roles that variation, heritability and selection play in the evolutionary process, along with a developed understanding of how numerical changes in population occur, and enhanced knowledge of how to analyse such shifts in order to make predictions about future changes. This module will also reinforce students’ understanding of the application of theoretical models, the changing effects of costs and behaviours due to circumstance, and how conflicts of interest might influence the reproductive success of individuals.
Students taking this module will gain a range of transferable skills including: report writing, data analysis and presentation, team working, verbal presentation, summarising technical texts and design of scientific enquiries.
A record of Earth’s geological history – its metamorphic, igneous, sedimentary and tectonic processes, and its surface paleogeography and climate – can be extracted from the analysis and interpretation of its rocks, minerals and fossils. Expanding on an earlier module in geology, this module examines such processes and products (rocks), focusing on how to interpret the geological history from the rock record. This is a strongly practical-based course, designed to provide students with key geologic skills required to interpret the rock record. Students will develop skills in the identification of minerals in thin section, identification of rocks and fossils in hand specimen, geologic map interpretation, use of topographic and geologic maps and field note books, field sketches, compass clinometers and stratigraphic logging, in addition to a range of skills in synthesising data in order to produce overall interpretations.
Students will gain the necessary skills required to describe and classify rocks in a specimen, and identify minerals in thin section. Students will develop a working understanding of how rocks are dated, and will utilise stereonets to extract sedimentological and structural data. Additionally, students will be able to interpret geologic maps, including sedimentological and structural data, and will determine past sedimentary, igneous and metamorphic environments of formation and the processes by which deformation and exhumation occur, along with developing the ability to apply Earth science field techniques in order to unravel the geologic history of an area.
This course provides an advanced overview of the processes that determine the nature of the Earth's surface features. It will introduce you to glaciology, hydrology, hillslope processes, Aeolian activity, and the impact that these have on both the Earth's surface and on the sediments beneath. The aim is to help you develop a clear and detailed understanding of physical geography and to provide a firm foundation for developing deeper insights through specialisation into different elements of the subject in your third year.
Eco-innovation, being the development of new products, processes or services that support business growth with a positive environmental impact, is one of the key enabling instruments identified by the European Union for the transition to a more resource efficient economy. It is embedded in the Europe 2020 strategy for supporting sustainable growth. This module will provide several case studies which outline the way in which businesses have applied eco-innovation in practice Students will gain knowledge of the key approaches to, and models of, eco-innovation in a range of business and policy contexts in addition to a reinforced understanding of how innovative ideas can be turned into practical solutions for complex socio-environmental problems, and how different business models and financing approaches can be used to make the solution commercially viable and potentially profitable.
Students will gain knowledge of eco-innovation and understand how the concept relates to business opportunities for environmental goods and services. In addition, students will gain the knowledge and skillset required to analyse how both small businesses and large global organisations apply eco-innovation into their business planning, whilst
Evaluating business opportunities related to the environment in the context of products and services to address flooding or other complex problems. Students will learn how to create proposals for eco-innovation, and prepare presentations for a panel of experts, and will develop the necessary level of understanding required to analyse technical, financial, and environmental information from a wide range of sources in order to comprehend and evaluate strategies to address complex environment-society problems and challenges.
Oceans are central to people’s cultures and identities, generate significant wealth, and are vital to securing food. However, the oceans, and the associated benefits, are increasingly under threat from human impacts. This module will examine the various relationships that people have developed with the marine environment, the threats facing these environments, and the policy narratives that have emerged.
Through a series of lectures that feed into seminars, students will learn about a range of topics that have informed ocean policy narratives. By digging deeper into the foundations of environmental thinking about the relationship between people and the sea, students will recognise the contribution oceans make to society and analyse contemporary grand challenges (e.g. climate change, food security, cultural integrity).
Students who demonstrate active engagement with the subject matter will develop a broad understanding of the diverse relationships people form with the sea. This would include an appreciation of the fact that the ocean provides a range of values and benefits to different people, and an insight into the threats and policies facing ocean ecosystems, fisheries, and coastal communities.
With this knowledge, students shall contrast two or more perspectives on ocean governance and coherently argue and defend the merits of a chosen perspective. To this end, they will present an articulate and coherent argument that synthesizes diverse sources of information in support for, or against, a particular narrative.
The contemporary world is full of intriguing political developments. Examples range from questions of national independence in the UK, through geopolitical concern with nuclear arms development, to humanitarian crises brought on by civil war. These political moments and their historical trajectories are united by an engagement with space and power; two themes that largely frame what might be called political geography. Against this background, this course examines the importance of politics to human geography and, indeed, geography to the study of politics. A range of classic ‘staples’ of political geography will be explored including engagements with geopolitics, nationalism and border studies. Additionally, we examine social movement activism and mobilisation, security and what it means to be a ‘superpower’. In all cases, theoretical grounding in these core themes will support empirical engagement with a range of case studies, both historical and contemporary.
Recent emphasis on global change and biodiversity has raised awareness of the importance of species and their interactions in determining how sustainable our lifestyle is. This module explores the factors that drive population and community dynamics, with a strong focus on multi-trophic interactions and terrestrial ecosystems.
Students will be introduced to population ecology and will discover the abiotic factors that regulate populations, life history strategies of populations, competitive interactions within populations, and meta-population dynamics, in addition to an understanding of how species interact both within and across trophic levels. The module exposes students to the belowground system and will look at how the species interactions and soil communities discussed impact on community structure and dynamics. The module aims to give students a fundamental understanding of ecology - such knowledge is essential for informing conservation and sustainable land-use practices, and efforts to mitigate climate change.
In order to complete this module, students will develop the ability to outline the primary factors that drive population dynamics, whilst critically discussing examples, and will reinforce their understanding of the implications of species interactions for community dynamics. Students will also gain a critical awareness of biotic responses and their contribution to climate change.
This module aims to provide students with broad understanding of the discipline of conservation biology. The module starts by defining biodiversity, discussing its distribution in space and time, and its value to humankind, before examining the key anthropogenic threats driving recent enhanced rates of biodiversity loss. The module then focuses on the challenges for conservation of biodiversity at several levels of the biological hierarchy: genes, species, communities and ecosystems, and the techniques used by conservationists at these levels. The final part of the module looks at the practice of conservation through discussion of prioritisation, reserve design and national and international conservation policy and regulation.
Students will develop a range of skills including the ability to discuss the principle threats to global biodiversity and the rationale for biodiversity conservation, in addition to application of a range of metrics to quantify biodiversity. Students will gain a critical understanding of the various approaches to conserving genetic, species and ecosystem diversity, as well as an enhanced knowledge of quantification of popularisation approaches to prioritisation of conservation goals, and how nature reserves can be designed to improve conservation potential.
This module aims to introduce and demonstrate the nature and properties of soils in an environmental context. It will provide an introduction to soil formation, soil description (including field work), chemical and physical properties, and biology, which will lead to the application of soil science to a variety of practical problems. This module gives exciting grounding in the nature and importance of soils in context with wider environmental issues. As well as detailed knowledge of fine scale soil processes, students will learn interdisciplinary thinking that helps them connect different and complex strands of knowledge from around the earth system.
Students will be able to describe the nature and roles of soils in the environment, and will gain the level of understanding required to describe the nature and role of soils in the environment. Successful students will be able to give a basic account of soil chemical and physical properties, as well as soil biology, and will develop the ability to discuss applied aspects of soils, specifically nutrient recycling and carbon storage.
In this year, you will study at one of our international partner universities. This will help you to develop your global outlook, expand your professional network, and gain cultural and personal skills. You will choose specialist modules relating to your degree as well as other modules from across the host university.
The dissertation project is an individual and individually supervised extensive project ending in submission of a substantial dissertation report. Students will choose from a set of dissertation research areas or topics based on a LEC-wide list compiled by the module conveyor. There will be regular meetings with dissertation supervisor, and students will develop a specific dissertation topic, along with research questions, aims, objectives and methods. This will be followed by a period of background reading, discussion and planning, before their dissertation drafts are analysed, marked and a final draft of up to 10,000 is submitted in week 11 of the term.
Students must take active involvement in the module and make good use of interaction with the supervisor in order to deepen their subject specific knowledge and ability to work independently. Depending on the discipline, style and topic, students may focus on methods, field techniques, lab techniques, or a combination of computer and software tools.
You will have the option of taking either a Dissertation or a Dissertation with External Partner. However, please note that students taking a Study Abroad year must take the Dissertation option.
The placement dissertation provides you with experience of the workplace in a context that is relevant to your academic study. It enables you to take your academic knowledge and to experience at first hand how it can be applied in the workplace. You will also get to see how the requirements of a particular organisation influence the interpretation and implementation of academic knowledge. The placement thus provides a unique opportunity to study the ways in which the academic and commercial worlds intersect and to appreciate both the opportunities and constraints involved in applying geographical, environmental and biological knowledge in a real-world context. The experience will both enhance your academic knowledge and understanding and improve your employability in sectors relevant to your degree.
You will have the option of taking either a Dissertation or a Dissertation with External Partner. However, please note that students taking a Study Abroad year may not take this option, as the work placement element would clash with the year abroad.
With a focus on pre-colonial, colonial and post-colonial history, this module provides a focus on the representations of Africa, such as how the ‘dark continent’ has been portrayed in different cultural settings by the media, art, NGOs, governments and public. These representations will be compared and contrasted with, on the one hand, our own perceptions of Africa and, on the other hand, how Africans see themselves. Students will discover African reactions to racial stereotyping during colonial and post-colonial times, and will be introduced to the work of Frantz Fanon, as well as exploring the challenges, constraints and opportunities of rural communities, such as how they manage their livelihood, welfare, development and survival in response to a changing socio-political, economic and ecological environment.
Students will learn to demonstrate a concise understanding of the topic through examinations and coursework, and will develop practical skills such as debating and group discussion, with the aim to critically engage with current perceptions of Africa in newspapers, film, television, visual art, literature amongst other media. Additionally, the module will address the different approaches towards the subject from a Euro-American versus African perspective and will equip students with the ability to develop a detailed understanding of post-colonial theory as a critical lens to study contemporary challenges in Africa.
This intensive week-long residential fieldtrip to south west Switzerland is a new collaborative third year module, jointly offered by the University of Lausanne and Lancaster University. It is a unique intercultural exchange in knowledge, with Lancaster and Lausanne students working together. The module provides students with training in the design and implementation of research to understand alpine environments. Students will collect significant amounts of field data and focus on one of six interconnected study themes, spanning: alpine climate and hydrology; glacial processes; alpine rivers; streams; soils; and ecosystems. The module will provide students with an in-depth understanding of a particular thematic focus of alpine environments.
All cities are shaped by the flows and forces that connect them to other places. Whilst these connections enable cities to become vibrant and creative, this module will focus on a number of challenges that might arise from globalisation.
Students undertaking this module will develop spatial thinking whilst exploring a range of features including urban networks and politics, such as poverty, global change and security. The module will explore the cities’ resulting transformations through a combination of readings, lectures, group activities and fieldwork. The module will also present students an opportunity to compare the experiences of cities in different parts of the world.
This module explores climate change in the context of it being a ‘wicked problem’. The aim is to provoke students to look beyond the simple narratives pushed at us about climate change and to start to think critically as wicked problems require us to do. In doing so, students are invariably forced to abandon often naive assumptions about what can and can't be done to tackle climate related risks.
This module employs developing and using an Integrated Assessment Model (IAM) as its primary learning device because, for all their deficiencies, IAMs have become the most important way synthesising the various components of the climate change 'problem'. Practical decision making is a theme running through the module supported by quantitative analysis. However, this necessarily involves debate and discussion over the normative values we use in our analysis of climate change and students will be expected to actively participate in this debate, holding and developing their line of argument both in small groups and in class wide discussions.
By the end of this module, students will recognise the role of societal and climate dynamics in climate change management, and will gain the necessary knowledge required to comprehend the basis of sustainable development in the context of climate change management. They will also be able to perform simple, yet meaningful evaluation of a range of climate related options.
This interdisciplinary module draws on perspectives from Geography, Conservation Science, Archaeology and more to explore the past, present and future of Amazonia. You will cover a broad range of topics, including debates around the question of whether the Amazon is a pristine forest or a cultural artefact; deforestation and agricultural transitions; conservation and extractive reserves; mega-dams and environmental justice; rural-urban migration and future resilience of Amazonian socio-ecological systems. By the end you will have learnt to see the world’s largest rainforest and its people through a variety of lenses, and that almost everything you thought previously about the Amazon was wrong!
Students will learn both the principles on which remote sensing systems operate, and how useful environmental information can be derived from remotely sensed data. From this, students will be able to compare the information provided by remote sensing sensors from several areas of research such as ecology, biology, geography, geology, marine and atmosphere science.
They will also develop image processing skills and learn how remote sensing data can be used to extend our understanding of ecosystems and global environmental changes.
The aims of this module are fulfilled by initially examining the physical basis of remote sensing in terms of the characteristics of electromagnetic radiation and its interactions with the Earth's atmosphere and biosphere. This physical basis is also examined in terms of how the sensors and satellites operate in a modern earth system observatory. The techniques used to analyse and interpret images will then be used to understand local, regional and global environmental changes.
This is followed by an investigation of the environmental applications of remote sensing. Here, satellite images from NASA, ESA and several international space agencies are used to illustrate the increasing importance of remotely-sensed data for environmental and climate applications.
Laboratory practicals allow students to study the physical principles of remote sensing, and computer practicals are used to demonstrate image analysis techniques using ENVI Imagine: a state-of-the-art software package.
Food and Agriculture in the 21st century explores the social, political and environmental challenges facing food systems in the world today. This includes the history, culture and development of contemporary food systems. The focus is on the industries’ interactions with plants, animals and the landscape, and the resultant debates regarding food security and food sovereignty. Through the exploration of case studies from across the globe, students will consider the connections between changing diets, landscapes and agrarian reform. They will also develop innovative and alternative solutions for the future.
The module encourages the development of skills in debate and analysis by drawing on environmental history, human geography, anthropology, sociology, historical and political ecology and cultural studies.
Students will ultimately be able to describe the social, ethical, economic and environmental challenges facing food systems and understand the connections between production and consumption and how these have shaped the contemporary food systems.
This module covers both the principles of Geographical Information Systems (GIS) and GIScience, and provides practical experience in the use of GIS using ArcGIS, a leading windows-based package. Students will engage with a number of theoretical issues, such as the problems of representing real world phenomena in GIS databases, and will consider emerging trends within the discipline such as WebGIS and the Open Source GIS movement. Lectures also explore the use of GI in government, commercial and academic sectors and related employment opportunities, and are complimented by a series of practical sessions in ArcGIS. Initial exercises are concerned with creating, manipulating and querying spatial data using the core functionality of the software, and subsequent exercises demonstrate more sophisticated forms of spatial analysis using a range of extension products including Spatial Analyst, Network Analyst and ArcScene.
Over the duration of the module, students are required to source their own data, conduct appropriate analyses and produce a project report. This combination of concepts, theories and practical experience provides students with the requisite skills to enter the graduate workplace, and they will learn how to explain how data may be modelled, captured, stored, manipulated and retrieved from within GIS. Additionally, the module will enhance students’ abilities in a range of areas, such as the design and implementation of a spatial database and appropriate forms of analysis, knowledge of the latest developments and emerging issues and trends in GIS and GISc.
This module takes a broad look at geological hazards, covering contemporary events, to those that have shaped the Earth over geological time. Specific hazards are addressed, including earthquakes and tsunamis, terrestrial and sub-marine landslides at a variety of differing scales, landslide triggering and principles of run-out, volcanic hazards (eruption styles, plumes and pyroclastic flows) and extreme events which civilisation has yet to witness.
The module explores in depth the fundamental processes involved, and to what extent events can be predicted. Case histories of national and international disasters will be used to illustrate these hazards, with the inherent risks and potential mitigation measures discussed. The module develops a sense of human-place in the geological world, promoting an understanding of how the geological world impacts human society, and what can be done to limit that impact.
Students will be able to describe and explain the processes responsible for the occurrence, recurrence and magnitude of geological hazards, and will gain the knowledge needed to evaluate hazard prediction methods. Additionally, students will gain a critical understanding of risk mitigation strategies, with reference to examples from around the world, and will gain the practical knowledge required to apply simple principles of analysis of slope failure using a variety of natural hazard situations. Students will also be able to demonstrate how simple probabilistic models may be applied to forecasting earthquakes, and discuss the uncertainties inherent in these techniques.
This module will give you an insight into the physical dynamics and ecological interactions within glacial systems. We begin with the concept of mass and surface energy balance, determining when and where snow and ice melt may occur. This determines how water flows through a glacier and introduces the concept of hydrological regime. We then study the implications that this has for glacial dynamics and the legacy of past glacial systems in the environment. Where ice sheets and glaciers overlie active volcanic systems there is currently very little understanding of how the two forces interact - does volcanic activity control glacier behaviour or is it the other way round? We introduce the concept of studying glaciers as ecosystems, rather than just physical systems in the landscape, and discuss recent advances in glacier hydrochemistry in the context of climatic change.
The aim of this module is to introduce the concept of the Earth system and how the different components interact with each other to shape the Earth's climate and control how the climate might change. The module begins with underlying concepts that shape the Earth's, before considering natural and human drivers of climate change, including volcanoes, solar output, greenhouse gases and land use change. In addition, it will also introduce the computer models and global observation networks that scientists use to understand the Earth system as well as the IPCC process.
This module provides students with an introduction to the physical processes which influence global climate change, leading to a better understanding of Earth system science and give them a clear understanding of the Earth system and the human impacts on it, and how scientists investigate this area with Earth system model.
Students will gain the level of experience and knowledge necessary to demonstrate subject specific skills, such as how to calculate a global 2-compartment radiative budget, along with an understanding of the major parts of the Earth system and how they interact. Students will develop the communication skills required to describe what an Earth system model is, and will be able to explain pollutant sources and sinks.
This course is based at the Slapton Ley Field Studies Centre, South Devon in the summer and centres on a study of the hydrological processes governing nitrate eutrophication of Slapton Ley, a coastal freshwater lake of ecological significance. The course offers a unique opportunity to examine an actual environmental problem - eutrophication - through the integration of field measurements and laboratory analysis. Field measurements, in small groups, will combine qualitative observations with borehole hydraulic testing and some geophysics. Laboratory analysis will include contaminant breakthrough experiments, soil physical properties, nitrate chemistry and topography-based simulation modelling. Your understanding of the nitrate remediation measures will be reinforced through a field visit on 'Catchment Sensitive Farming' led by Natural England staff.
This module introduces the underpinning aspects of geophysical and remote sensing techniques used to investigate the Earth's surface and near surface. The techniques covered are illustrated by case studies demonstrating their advantages and limitations, for example, for the investigation of contaminated sites and sites suitable for exploitation (e.g. for minerals or for hydrothermal energy) and for monitoring hazardous regions such as volcanoes. The module delivers a synoptic view of active and passive techniques, seismic, gravity, magnetic, radar and electrical methods for sub-surface characterisation and GPS, radar and laser techniques for surface measurements. The techniques are linked through developing an understanding of measurements in terms of both spatial and temporal coverage and resolution.
Students will develop a range of skills necessary to describe the range of applications of geophysical measurements, and discuss the advantages and disadvantages of different geophysical and remote sensing techniques. Students will gain the practical experience required to assess appropriate measurement strategies for specific environmental problems and identify sources of geophysical measurement error. Additionally, students will be able to relate different geophysical measurements in terms of spatial and temporal coverage and resolution.
In this module, students will be shown how, through manipulation of species, communities and ecosystems, habitats can be managed in a sustainable way that preserves and enhances their aesthetic, scientific, recreational, and often utilitarian, value. The creation of new habitats will be considered, as well as management of existing areas of conservation interest. The module is largely taught by external lecturers who are directly involved in the application of ecological principles to practical problems.
Students will develop the level of ability required to describe the nature of selected habitat types, as well as explaining a series of underlying ecological processes which necessitate management. Students will also be able to identify the techniques used for conservation management specific to a range of habitat types, in addition to reinforcing a range of transferrable skills, such as the ability to present scientific data clearly and concisely, in both written and oral format. Students will learn to work autonomously as well as being involved in group work.
Join a discussion and debate where you are encouraged to critically examine primary literature and ideas on topical issues in conservation biology in the UK and globally. Gain an understanding of the key factors that constrain conservation and of the interdisciplinary nature of conservation problems in the real world.
This module covers primarily the physical processes and phenomena that govern the nature of lakes, rivers and estuaries. It also covers the biological and chemical processes that operate within the framework of their physical structure and investigates how the physical, chemical and biological aspects of lakes, rivers and estuaries influence and relate to each other.
Students shall become well versed in the following areas: the nature and functioning of aquatic environments, the ways in which physical, chemical and biological processes and phenomena interact in the environment, and ways in which fundamental scientific concepts play out in the environment.
From this, they will be able to determine the water quality and ecological health of these areas. Students will also acquire the skill of interpreting data sets generated by instrumentation that are widely deployed for monitoring and management purposes in lakes, rivers and estuaries.
They will also learn how curiosity-driven scientific understanding can be applied in the exploitation, management and conservation of aquatic environments.
Modern resource-intensive agriculture has proved incredibly successful in delivering relatively abundant, cheap food (at least in the developed world), but sometimes at considerable environmental cost. Therefore the general public is usually keen to embrace "sustainable agriculture" but is generally unaware of the economic and food production costs of proposed changes in crop management. By emphasising the concept of crop resource use efficiency, this module focuses on the viability of less intensive agricultural systems.
Students will critically examine primary literature on topical issues concerning the sustainability of different agricultural systems. They will gain an understanding of the key factors constraining food production, and the environmental and food production consequences of different crop production systems.
In addition to gaining the ability to identify key issues affecting the sustainability of agriculture, students will critically appraise the literature on these issues, and will develop the skillset required to recognise the economic and societal problems constraining the adoption of more environmentally sustainable agriculture. Ultimately, students will gain the ability to discuss alternative scenarios and solutions for key environmental problems associated with agriculture and document said issues in a cogent and critical manner.
In this module, students will learn the mechanisms by which radiation damages the body and the systems by which we measure and control exposure to radiation. The sources of naturally occurring radioactivity and radioactive contaminants and their behaviour in the environment will be studied in order to better understand how people can become exposed. Students will become better equipped to understand and evaluate the risk to human populations of nuclear accidents.
Through the study of specific radiation-related case studies, students will develop an understanding of risk in a wider context, being able to contribute more thoughtfully to nuclear-related debates in society. They will practice and develop their numerical skills through the determination of radioactive decay, learning to manipulate and solve basic radioactive decay law equation in the process.
Laboratory classes will be used to demonstrate concepts addressed in lectures, and students will be encouraged to put the data generated into the wider context. For example, students will practise dose assessments, and linking those back to the processes that control the fate and distribution of radionuclides in the environment, hence developing skills in synthesis and evaluation.
As the world becomes increasingly urbanised, so too does the power of urban infrastructure to shape the dynamics of cities and the experience of everyday life. Urban infrastructure is key to sustaining much that we take for granted, for example travel, food, water, energy, communications, and waste. It follows that changes to the way infrastructure is managed will impact both the city as a whole and the experience of everyday urban life. This module examines ways of understanding urban infrastructure as a ‘socio-technical assemblage’, a term that will become more familiar throughout the module. Using case studies from around the world you will engage with the changing pressures on infrastructure and the challenges of building resilient futures. You will learn through a combination of lectures, seminars, a workshop and field course activities.
This module expects students to apply a range of skills already developed in previous modules Geology, Natural Hazards, Geoscience in Practice and Geological Hazards. It allows students to improve their theoretical and practical knowledge of volcanic processes by studying the evolution of a basaltic volcano. Students will explore a wide range of the complex physical volcanic processes that take place both on the surface and beneath volcanoes, including lava flow emplacement, intrusive and explosive events. This problem-based learning module covers two levels of problems: the higher-level problem (e.g. understanding the plumbing system of a complex volcano or the role of ‘volcano spreading’ or slope instability in the evolution of volcanoes) will occupy the entire module. Lower level problems will be solved at a number of key localities where students will be expected to unravel the processes involved.
On completion of this module, students will express the ability to systematically observe and interpret field evidence for emplacement processes of volcanic rocks, along with gaining the knowledge required to describe the intrusive, effusive and explosive processes that take place during volcanic eruptions. Students will also demonstrate the ability to recognise the role of regional tectonics, gravitational deformation of the volcano and major slope instabilities on the evolution of basaltic volcanoes. The module will also prepare students with the level of practical knowledge necessary to explain the problems of dealing with volcanic hazards on heavily populated active volcanoes.
Water is fundamental to life and is therefore a critical natural resource for human society and for all ecosystems. Employers of graduates from a wide range of environment-orientated degrees increasingly value understanding of the frameworks and technologies through which water resources can be conserved and restored, alongside the interactions between water and other natural resources such as land. This module focuses on providing this understanding, drawing on a wide range of real-world examples from the UK water sector. Students will cover the major UK and European regulatory frameworks that currently drive water resource management, the technologies available to treat wastewater, the approaches used to assess chemical and biological water quality, and the links between agricultural and urban development and water quality. This learning will be reinforced by field visits to wastewater treatment works, and by practical work dealing with datasets collected by the Environment Agency of England and Wales.
Over the duration of the module, students will be required to apply standard Environment Agency statistical procedures to assess chemical water quality, along with applying standard Environment Agency procedures to evaluate biological water quality. The module will enhance students’ ability to identify the strategies for assessing and managing water quality in the UK, and they will be able to derive simple dilution models to describe pollutant concentrations in river networks. Finally, students will gain the knowledge required to be able to explain and describe the fundamentals of water treatment processes.
Students undertaking this module will learn about the human and physical aspects of the Mediterranean environment. The module will focus on the distribution, allocation and use of water, whilst exploring the ways in which land use or land management affect the water environment.
Students will learn about the physical constraints on water availability whilst analysing the role of government institutions and private companies in developing and managing water for a range of purposes.
By participating in a four-day field course, students will have the opportunity to experience the distinctive environmental, cultural and socioeconomic nature of the Istrian peninsula. Generally, the module is designed to develop students' independent and group-based skills and enhance their knowledge related to water, particularly in the Mediterranean environment.
Our annual tuition fee is set for a 12-month session, starting in the October of your year of study.
We set our fees on an annual basis and the 2025/26 home undergraduate entry fees have not yet been set.
Home | International |
---|---|
TBC | £29,820 |
Some optional modules require students to carry out fieldwork that, depending on the location and type of fieldwork, may require wet weather clothing, boots and waterproof notebooks, for which the estimated cost is approximately £110. The course offers optional residential field trip modules and students choosing to take these will have to pay towards their travel and accommodation costs.
There may be extra costs related to your course for items such as books, stationery, printing, photocopying, binding and general subsistence on trips and visits. Following graduation, you may need to pay a subscription to a professional body for some chosen careers.
Specific additional costs for studying at Lancaster are listed below.
Lancaster is proud to be one of only a handful of UK universities to have a collegiate system. Every student belongs to a college, and all students pay a small college membership fee which supports the running of college events and activities. Students on some distance-learning courses are not liable to pay a college fee.
For students starting in 2025, the fee is £40 for undergraduates and research students and £15 for students on one-year courses.
To support your studies, you will also require access to a computer, along with reliable internet access. You will be able to access a range of software and services from a Windows, Mac, Chromebook or Linux device. For certain degree programmes, you may need a specific device, or we may provide you with a laptop and appropriate software - details of which will be available on relevant programme pages. A dedicated IT support helpdesk is available in the event of any problems.
The University provides limited financial support to assist students who do not have the required IT equipment or broadband support in place.
In addition to travel and accommodation costs, while you are studying abroad, you will need to have a passport and, depending on the country, there may be other costs such as travel documents (e.g. VISA or work permit) and any tests and vaccines that are required at the time of travel. Some countries may require proof of funds.
In addition to possible commuting costs during your placement, you may need to buy clothing that is suitable for your workplace and you may have accommodation costs. Depending on the employer and your job, you may have other costs such as copies of personal documents required by your employer for example.
The fee that you pay will depend on whether you are considered to be a home or international student. Read more about how we assign your fee status.
Home fees are subject to annual review, and may be liable to rise each year in line with UK government policy. International fees (including EU) are reviewed annually and are not fixed for the duration of your studies. Read more about fees in subsequent years.
We will charge tuition fees to Home undergraduate students on full-year study abroad/work placements in line with the maximum amounts permitted by the Department for Education. The current maximum levels are:
International students on full-year study abroad/work placements will be charged the same percentages as the standard International fee.
Please note that the maximum levels chargeable in future years may be subject to changes in Government policy.
You will be automatically considered for our main scholarships and bursaries when you apply, so there's nothing extra that you need to do.
You may be eligible for the following funding opportunities, depending on your fee status:
Unfortunately no scholarships and bursaries match your selection, but there are more listed on scholarships and bursaries page.
Scheme | Based on | Amount |
---|---|---|
Based on {{item.eligibility_basis}} | Amount {{item.amount}} |
We also have other, more specialised scholarships and bursaries - such as those for students from specific countries.
Browse Lancaster University's scholarships and bursaries.
The information on this site relates primarily to 2025/2026 entry to the University and every effort has been taken to ensure the information is correct at the time of publication.
The University will use all reasonable effort to deliver the courses as described, but the University reserves the right to make changes to advertised courses. In exceptional circumstances that are beyond the University’s reasonable control (Force Majeure Events), we may need to amend the programmes and provision advertised. In this event, the University will take reasonable steps to minimise the disruption to your studies. If a course is withdrawn or if there are any fundamental changes to your course, we will give you reasonable notice and you will be entitled to request that you are considered for an alternative course or withdraw your application. You are advised to revisit our website for up-to-date course information before you submit your application.
More information on limits to the University’s liability can be found in our legal information.
We believe in the importance of a strong and productive partnership between our students and staff. In order to ensure your time at Lancaster is a positive experience we have worked with the Students’ Union to articulate this relationship and the standards to which the University and its students aspire. View our Charter and other policies.
Take five minutes and let us show you what Lancaster has to offer, from our beautiful green campus to our colleges, teaching and sports facilities.
Most first-year undergraduate students choose to live on campus, where you’ll find accommodation to suit different preferences and budgets.
Our historic city is student-friendly and home to a diverse and welcoming community. Beyond the city you'll find a stunning coastline and the picturesque Lake District.