4th for satisfied with teaching (Biomedical Science)
The Guardian University Guide (2025)
Pharmacology at Lancaster University will provide you with a deep understanding of how drugs interact with living systems and affect our bodies – something crucial to health in our society. In addition to studying drug development, mechanisms of action, therapeutic uses, and potential side effects, you'll also gain insight into the wider societal and regulatory context in which drugs are used and new drugs are developed.
The MSci is a four-year integrated master’s with three years of undergraduate study and a year at master’s level. The additional year of study and higher qualification can enhance your job prospects or give you the experience to decide whether a research career might suit you.
We’ve designed the content of our course to align with the British Pharmacological Society’s core curriculum, equipping you with the skills and knowledge you need to understand the world of pharmacology.
In your first year, you will gain a thorough grounding in the biomedical basis of pharmacology through the study of 15 wide-ranging core modules, including Introduction to Pharmacology, Drug Discovery and Development, and Protein Biochemistry.
You will study core theory modules such as Pharmacology, Biochemistry and Genetics in your second year. These are complemented by skills-based modules that give you an understanding of the experimental techniques used in modern pharmacological research.
In addition to core modules such as Neuropharmacology and Advanced Drug Design and Development, the third year allows you to tailor your module choices to your interests. Optional modules include Clinical Immunology and Molecular and Biochemical Parasitology.
In the fourth year, you'll have the opportunity to further focus your studies, choosing from advanced modules that cover developments in fields such as cancer, immunology and neuroscience.
You'll also undertake an extended research project, working as part of the team in one of our research laboratories. This allows you to put what you've learned into practice while benefiting from the research experience of our internationally renowned academics. Their work is helping to tackle globally significant healthcare challenges such as infection, cancer, Alzheimer’s disease, and inflammatory conditions like asthma and psoriasis.
The pharmacology facilities at Lancaster are excellent. Our state-of-the-art life science teaching laboratories provide the ideal environment to develop your practical skills. Here, you’ll get hands-on experience in using equipment like microscopes, plate readers and PCR machines to gain the skills needed for a successful laboratory career.
Career destinations for pharmacology graduates include employment in research or research management in the academic, pharmaceutical and biotechnology sectors.
Beyond research, other potential career paths you might follow include manufacturing or commercial roles in the pharmaceutical industry, working in scientific communication and publishing, science policy, as well as roles in monitoring and licencing of medicines and regulatory affairs.
Pharmacology graduates may also undertake further vocational study to enable careers in areas as diverse as teaching or patent law. The additional research experience gained through the extended project undertaken in the fourth year of study is good preparation for undertaking a postgraduate research degree.
The broader employability skills acquired while studying for a degree in pharmacology would also provide you with a solid basis for graduate-level employment outside the field of pharmacology, for example in the financial or management sectors.
Entry requirements
Grade Requirements
A Level AAA
Required Subjects A level Chemistry and one other science subject from Biology, Mathematics or Physics
GCSE Mathematics grade B or 5, English Language grade C or 4
IELTS 6.5 overall with at least 6.0 in each component. For other English language qualifications we accept, please see our English language requirements webpages.
Other Qualifications
International Baccalaureate 36 points overall with 16 points from the best 3 Higher Level subjects including 6 in HL Chemistry and 6 in one further HL science subjects from Biology, Mathematics or Physics
BTEC considered alongside A level Chemistry for entry to the standard BSc Hons course variant only. Subject to academic progression and availability students can transfer to the MSci Hons course.
We welcome applications from students with a range of alternative UK and international qualifications, including combinations of qualifications. Further guidance on admission to the University, including other qualifications that we accept, frequently asked questions and information on applying, can be found on our general admissions webpages.
Delivered in partnership with INTO Lancaster University, our one-year tailored foundation pathways are designed to improve your subject knowledge and English language skills to the level required by a range of Lancaster University degrees. Visit the INTO Lancaster University website for more details and a list of eligible degrees you can progress onto.
Contextual admissions
Contextual admissions could help you gain a place at university if you have faced additional challenges during your education which might have impacted your results. Visit our contextual admissions page to find out about how this works and whether you could be eligible.
Course structure
Lancaster University offers a range of programmes, some of which follow a structured study programme, and some which offer the chance for you to devise a more flexible programme to complement your main specialism.
Information contained on the website with respect to modules is correct at the time of publication, and the University will make every reasonable effort to offer modules as advertised. In some cases changes may be necessary and may result in some combinations being unavailable, for example as a result of student feedback, timetabling, Professional Statutory and Regulatory Bodies' (PSRB) requirements, staff changes and new research. Not all optional modules are available every year.
In this module, the anatomy of the human body is explored. The module begins with an overview of the components of the eleven systems of the human body. The various types of body tissue are examined and their structure-function relationships investigated. Several body systems are explored in detail for example skeletal system, urinary system, integumentary (skin) system and muscular system. Finally, vision and hearing are discussed.
In the laboratory, students will investigate blood, with emphasis on staining techniques used in order to identify types of white blood cells. In workshops, posters are prepared and PowerPoint presentations used to consolidate understanding of lecture material. A laboratory revision session is provided which enables examination of a range of tissues and organs, designed to aid revision of the major topics covered in this module.
This module examines how biomedicine links into society. It initially looks at the historical developments of biomedicine, and key changes that have occurred often as a result of a dramatic change to society such as war. Students look at how ethics in particular have developed and how thinking and ultimately legislation has evolved in relation to unethical practice. Key ethical principles are explored in relation to both the treatment of humans and animals. To help understand the role of biomedicine in society the module examines the role of animals in experimentation, the ethics associated with running clinical trials with humans, issues related to contraception and the role the media plays in how society makes sense of developments in health care.
The module has a main weekly lecture but much learning and consolidation of knowledge occurs in smaller seminar groups where students are given the opportunity to share their learning through presentations and debates.
Biotechnology is one of the fastest moving fields in the biosciences. Genetic engineering techniques have allowed the manipulation of microorganisms, plants and animals to produce commercially important compounds, or to have improved characteristics. This module examines the techniques that are used in genetic manipulation and looks at examples of how the technology has been applied. The practical outcomes of genome sequencing projects and the way in which knowledge of the human genome can be applied to medicine and forensics are also considered. Practical classes and workshops allow students to perform some of the key techniques for themselves.
This module is an introduction to the structure and function of prokaryotic and eukaryotic cells. The first five lectures of the module will examine the main components of prokaryotic and eukaryotic cells and the way eukaryotic cells are organized into tissues. The techniques used to study cells will also be reviewed. The next two lectures will look in detail at the structure and function of mitochondria and chloroplasts and the chemiosmotic theory. This will be followed by a lecture on the way cells are organised into tissues. The final four lectures will cover reproduction in prokaryotic and eukaryotic cells and the eukaryotic cell cycle. The lectures are supplemented by two practical sessions, the first on light microscopic technique and the second covering organelle isolation
The past few decades have seen huge strides made in modern medicine, thanks in part to the development of new drugs. Previously debilitating or even fatal conditions can now be treated and managed effectively though pharmacology. In this module you will learn about the process of drug discovery and development, including the stages involved in taking a new drug from initial concept through to clinical use.
You will be given insight into how the drug development process involves input from a range of sciences, including pharmacology. We'll discuss the different ways that new drugs are discovered; from rational drug design, based on an understanding of the molecular mechanisms of disease, through to natural products and traditional medicines. Issues associated with the latter, such as difficulties of synthesis and the ethical implications of biopiracy will also be covered. The module will conclude by discussing the roles of preclinical testing and clinical trials in getting a drug to market.
In this module students will be introduced to the basic principles of experimental research design. We familiarise students with the principals underpinning the statistical analysis of quantitative data using examples from experimental studies in practice. We also offer students the opportunity to use basic statistics to analyse experimental data using statistical software (IBM SPSS). These practical sessions give students an opportunity to acquire data analysis skills. We cover the logic behind generating and testing hypotheses in experimental design and provide students with guidance on how to critically appraise published experimental research.
Students will gain an appreciation of the importance of experimental design in the study of human health; develop team-working skills; develop skills in self-directed learning using a virtual learning environment; experience the use of statistical software for performing statistical calculations; develop an ability to summarise and critique information from different sources in a coherent manner along with an understanding of how to report statistical results.
This module examines the way in which genetic information, encoded by the DNA of the cell, is replicated and passed on to each new generation of cells and whole individuals. The ways in which genes affect the characteristics of a cell or organism are explored at the molecular level. The fundamentals of these processes are very similar in all organisms but the unique features of eukaryotes and prokaryotes are highlighted. We will also examine the consequences of mutation and look at some examples of diseases and conditions caused by defective genes and alterations in chromosome number or structure.
The aim of this module is to introduce students to the mechanisms cells use to communicate with one another.
The structure and functions of several endocrine (hormone-producing) glands are investigated in lectures and workshops, such as the pituitary, thyroid and adrenal glands. The hormonal control of human reproduction is explained, followed by investigating the topic of fertilisation. Early embryogenesis is compared in a variety of organisms, supported by a laboratory session which enables a comparison of early embryogenesis in starfish, frog and chick. Finally, human pregnancy, development and fertility are examined with emphasis upon causes and treatment of infertility.
Physiology is the study of how the body works, and is largely concerned with homeostasis – i.e. how body function is maintained at a relatively constant level in different environments and circumstances. This course considers the physiology of the brain and the nervous system; the heart and the circulatory system; the external respiratory system (lungs, together with transport of oxygen and carbon dioxide in the blood) and the gastrointestinal system. There is also some limited information on the pathophysiology of relevant human diseases. Other aspects of human physiology, involving different tissue and organ systems, are covered elsewhere.
There is a workshop on neurophysiology (the Nernst equation), and practical classes that demonstrate the effects of exercise on blood pressure, the ABO blood grouping system, and the effects of pH on the activity of some key enzymes involved in digestion.
This module introduces students to the world of microbiology. They will receive tuition from lecturers working on the cutting edge of microbiological research.
Topics related to viruses, bacteria, fungi and protists will be covered. Hands on practical sessions will help students to understand the dynamics of bacterial growth, how to culture and count microbes, antibiotic resistance assays and identification of bacteria.
Students will start to understand the mechanisms that bacteria use to cause human disease. Several fungi will be examined and students will learn how fungi are exploited in industry. Finally students are introduces to the protists; examine beautiful ciliates and flagellates and watch predatory protozoa in action.
Covering a wide range of infectious organisms from viruses to worms, this module provides a comprehensive introduction to infection and immune responses of the host. The biology of the infecting organisms and the host’s immune response will both be examined as these are vital components in understanding the nature of the different types of infection.
Selected infections will be studied in detail in lectures and practicals and used as paradigms to illustrate principles of the host/pathogen interaction.
Pharmacology is a cornerstone of modern medicine. It provides the basis for the discovery, development and use of drugs for the management and treatment of human health and disease. In this module you will learn about the key concepts and principles that underpin the science of pharmacology.
We'll begin by considering how drugs interact with targets in the body to cause their physiological effects, a concept known as pharmacodynamics. Next, we'll investigate the fundamentals of pharmacokinetics: drug absorption, distribution, metabolism and excretion. We'll discuss how pharmacokinetics can be affected by factors such as age, sex, ethnicity and pregnancy, and how it is important to consider these factors when prescribing existing drugs and developing new ones.
You will also learn about the wider social context of pharmacology. We'll consider how risk and benefit are balanced when using drugs to treat or prevent disease, and also discuss drugs of abuse and their mechanisms.
In this module, students will explore the chemistry of some of the most important molecules to life, including water, nucleic acids, carbohydrates, proteins and lipids. The module begins with an overview of basic chemistry for example atomic structure, bonding, pH and molecular shape. It looks at the properties of water and how these enable water to support life. The structure and bonding within nucleic acids, proteins and carbohydrates are explored with emphasis upon how this is related to function within a cell. Finally, the structure and functions of lipids are described, with emphasis upon the role of lipids, proteins and carbohydrates in biological membranes.
Workshops on this module enable use of RasMol molecular modelling software, making molecular models and problem-based learning.
The purpose of this module is to expand upon the introduction to proteins given in BIOL111. Our approach is to use specific examples to demonstrate different aspects of protein structure, and to illustrate the way that the different properties of individual amino acids contribute to the function of the proteins they make up. The course is split into two linked themes. Firstly, an introduction to the major structural features of proteins is given, with an emphasis on how protein structure relates to function. Secondly, an introduction to enzyme biochemistry is presented. We consider how enzymes catalyse biochemical reactions, how their activities can be described quantitatively, and how enzymes are regulated within the cell.
This module introduces and provides training in the general skills necessary for the study of bioscience. These include use and care of laboratory equipment such as microscopes, spectrophotometers, micropipettes and centrifuges. It will also teach liquid-handling skills, and to calculate concentrations, volumes and dilution of solutions, particularly the importance and use of the mole concept. MS Excel will be used to generate statistics and to plot curves.
The other main area covered is that of scientific reading and writing. Students will learn to recognize good and bad sentences, use correct paragraph structure, to search for, acquire and know how to read scientific literature, and to avoid plagiarism. Finally, students will learn the various forms in which science is communicated and the ways public understanding of scientific findings can be distorted.
At the end of this module, all students will be able to record scientific investigation, collect data, present results, place them in the context of existing scientific literature and write a short scientific report.
Curriculum outline
Core
core modules accordion
This module is an introduction to cellular biochemistry focusing on the core pathways of intermediary metabolism which are central to cellular function. Specifically, it focuses on two related and key areas of biochemistry. The first is enzymology; how do proteins function as biological catalysts and how are chemical reactions controlled within a cell? Students will investigate how the many chemical reactions which participate in metabolism are accurately regulated and organised.
The second is cellular metabolism; particularly, how do cells obtain energy from their surroundings to maintain their complex order?
The module will cover several seminal and Nobel Prize winning research topics including a detailed look at the key reactions of the citric acid cycle and the coupling of electron transport, proton pumping and ATP synthesis. The concepts and areas of biochemistry covered will be further illustrated by reference to the pathological state and human diseases which result from specific malfunctions in biochemical pathways and reactions.
This module explores the interactions that take place both within and between cells and which allow them to perform their function in the whole organism. Students will consider five key topics within cell biology:
The methods used to study cells and the dynamic nature of the cytoskeleton
The mechanisms and physiological significance of transport across membranes
The mechanisms involved in cells receiving and acting upon information from outside of the cell
The mechanisms of development of whole organisms, examining how individual cells become committed to a particular function as development occurs
The regulation of the cell cycle, growth, and development. We will illustrate these topics using examples drawn from a range of biological system.
The aim of this module is to provide students with the skills they need to begin their future careers. The module will enhance career awareness, develop oral communications skills and develop CV and cover letter writing. Workshops include sessions on LinkedIn, information skills, assessment centres, interview techniques and entrepreneurship.
This module takes a molecular approach to understanding heredity and gene function in organisms ranging from bacteria to man. It begins by reviewing genome diversity and how genomes are replicated accurately, comparing and contrasting replication processes in bacteria and man. The module discusses in detail molecular mechanisms, particularly those that ensure information encoded in the genome is transcribed and translated appropriately to produce cellular proteins.
Students will focus on the importance of maintaining genome stability and damaging effects of mutations in the genome on human health. Examples are drawn from a range of inherited genetic diseases such as phenylketonuria and sickle cell anaemia, paying particular focus to how mutations in key genes are driving cancer development.
Teaching is delivered by a series of lectures supported by varied practical work, workshops, guided reading and online resources. Laboratory practicals include investigating how exposure of bacteria to ultraviolet light induces mutations – providing a model for understanding how skin cancer may develop as a consequence of excessive sun exposure.
This course examines the relationship between microbe and host; with particular focus on bacterial and viral pathogens. The diversity of structure, function and metabolism of bacteria, in relation to their role as a cause of disease, is explored and practical skills in bacteriology are introduced. Morphology and reproductive strategies of viruses are examined and methods for controlling viral infections by vaccination or anti-viral therapies are described. The course introduces principles of clinical microbiology by focusing on epidemiology, diagnosis, treatment of infection and host immune defences. The theme is one of "emergence" illustrating how some new infections have come to be a problem in health care and the importance of protective commensal microbes. The laboratory classes focus on diagnostic processes and illustrate the contribution which the microbiology laboratory can make to clinical decision making and epidemiology. This course also deals with the way in which pathogens (mainly bacteria) survive, and sometimes grow, in the environment and the implications this has for health in the community. The course is given in collaboration with health service consultants and workers from the University Hospitals of Morecambe Bay NHS Trust.
The aim of this module is to use real-world examples to provide you with an in-depth understanding of critical concepts in the science of pharmacology, including pharmacodynamics and pharmacokinetics. You will gain insight into pharmacodynamic concepts such as Emax, EC50, Kd and receptor occupancy and how these relate to both how drugs are administered and their effects on the body.
In addition to looking at how drugs affect the body, we'll also discuss how the body affects drugs, with an in-depth exploration of the pharmacokinetic parameters of absorption, distribution metabolism and excretion (ADME). Adverse effects of drugs and how these can be mitigated will be considered. We'll look at how drug formulation and route of delivery can alter ADME characteristics, enabling a drug's effects to be fine-tuned to achieve the required clinical outcome. You'll also explore examples of other factors that affect pharmacokinetics, including age, sex, ethnicity, pregnancy and medication status. We'll conclude by considering the influence of individual and population genetics on drug responses and what this means for both drug discovery and personalised medicine.
Lectures are supported by practical classes and workshops to enable you to develop your understanding of pharmacological concepts and see how theory is put into practice.
This module will provide you with an understanding of the steps involved in taking a lead compound through to market. You will gain insight into the challenges associated with developing and assessing the efficacy and safety of new drugs, including the testing strategies and legal requirements involved
We will explore the use of preclinical models for testing of pharmacokinetic and pharmacodynamic parameters and how this can aid in determining factors such as drug formulation and dosing schedule. We will then move on to discussing the role of clinical trials in determining drug safety and efficacy, looking in-depth at trial design and also considering the importance of post-approval surveillance. The module will also provide contextual information on how preclinical and clinical trials fit into the international medicines regulatory process and its requirements.
The aim of this module is to take you through the methods used in the discovery stages of the drug development process. We'll begin by discussing the techniques used for target identification and validation before moving on to hit identification and lead discovery. You will learn about different approaches for finding new drugs: from high throughput screening of compound libraries to focused screens and the role of virtual screens and structure-based drug design. We'll conclude by discussing the experimental techniques that are used for in vitro testing of lead compounds for activity and toxicity.
Lectures will be complemented by workshops and practicals where you will gain hands-on experience of some of the techniques covered in the module.
Core
core modules accordion
This module will provide an in-depth exploration of novel pharmacological approaches that are revolutionising the treatment of many conditions. You will first be introduced to new concepts in the design and use of small molecules to treat disease. For example, we'll look at how PROTACs and molecular glues can be used to degrade target proteins rather than inhibit them.
We'll also discuss recently emerging therapeutic avenues such as biologics, nanotechnology, cell and gene therapy, immunological therapies and other medicine modalities. You'll gain an understanding of how these approaches work and the benefits they offer in treating and preventing disease.
The research project gives students first-hand experience of research and also the opportunity to be immersed in, and learn about, an area of work which is of current interest. Students plan, conduct and report on an open-ended investigation, often related to research interests of a member of staff. Projects cover a very wide variety of topics and may be carried out in a variety of ways. They involve a significant amount of original work and analysis to be carried out by students so that they gain experience in a range of skills, including experimental design and the testing of hypotheses. The results of the research are reported in an 8,000 word dissertation and an oral presentation.
In this module students are given an overview of the cellular and molecular processes that underpin the development of cancer. This will enable students to discuss the various factors that can affect cancer susceptibility. Students will look at the approaches taken to treat cancer, including some of the new generation of molecularly-targeted cancer therapies.
The mammalian nervous system acts as the central regulator of physiology and behaviour, and its function can be modified by a diverse range of exogenous small molecules. Humans have utilised these small molecules for hunting, recreation, in biomedical research and for therapeutic purposes.
In this module you will develop a detailed understanding of how a diverse range of chemical agents impact on the function of the nervous system, along with the molecular targets and neurotransmitter systems involved. This will include consideration of small molecules used by humans recreationally, medically and those used in the context of treating disorders of nervous system. The therapeutic role of drugs in the treatment of mood, neurodevelopmental and psychiatric disorders will be considered. In addition, you will develop insight into recent advances in the drug development and validation process for novel drugs that act upon the nervous system, along with the range of models and experimental approaches utilised in this process.
Curriculum outline
Optional
optional modules accordion
For 50 years, thanks to evolutionary theory, we’ve known why we are fated to age and die, but our understanding of the mechanisms has been a lengthy evolution in itself. Only relatively recently, with the use of modern molecular biology tools, do we begin to understand the mechanistic basis of the ageing process, from early notions about rates of living to current ideas about modular yet interacting mechanisms including autophagy, protein synthesis, nutrient sensing, insulin-like signalling and disease resistance. Even now we do not clearly know what makes us age. Ageing is perhaps the most multidisciplinary area of study and is certainly one of the last great mysteries in biology.
This module introduces the area and the methodologies with which ageing is studied. Teaching is through lectures, workshops, practical work, individual and group-based coursework and private study.
This module explores some of the key roles played by ion channels and calcium ions in the communication that takes place within and between cells. The module is split into two linked themes. Firstly, an introduction to the diversity of ion channel families and their biological functions including the many different cellular processes throughout the life history of cells that are regulated by calcium ions as signals. Secondly, an investigation of the importance of ion channels and calcium signalling in animals, and human physiology in particular, using examples of diseases that are caused when ion channels malfunction (e.g. myotonia, malignant hyperthermia, sudden heart arrest caused by long QT syndrome.) or calcium signalling is disrupted (e.g. Alzheimer’s disease, polycystic kidney disease, pancreatitis). Students also gain hands-on experience of the techniques used to study ion channels and calcium signalling in cells.
Every day our body does something remarkable, but we are completely unaware of it most of the time: our immune system is constantly protecting us from pathogens in our environment as well as threats from within. This highly evolved, interdependent collection of organs, cells and chemical messengers is continually scanning our tissues for any unwanted intruders or abnormal cells. When we get ill, with a cold for example, full mobilisation of our immune system sends armies of cells and molecules to fight the problem in what can sometimes literally be a fight to the death. Fortunately for us, our immune system wins the battle almost every time!
In this module we examine the various components of the immune system – the organs, cells, and messengers, and how they function in health and illness. We look at particular threats such as allergies, infectious diseases and cancer, providing students with a good understanding of how this vital component of our bodies keeps us well.
Research and practice in biomedicine continues to evolve more rapidly than at any other time in history, raising fascinating but complex moral and ethical challenges for those studying and working in the field. Understanding ethics in biomedicine and the relationship between science and society has become an essential element in biomedical degree training.
This module builds on the Biomedicine and Society module, aiming to help students develop a deeper understanding of key ethical principles used in biomedicine and some major cultural, social and political influences that define research agendas and fuel ethical debates in the public perception of biomedicine.
The module takes on a seminar format structured around three core themes:
The development of ethical principles in biomedicine
Ethical practice and current debates in animal and human research including clinical trials
Ethical challenges such as those emerging in genetics and regenerative medicine and how these are debated in the media.
In this module students will work together as a team to propose a solution to a problem of biological relevance, for example antibiotic resistance, invasive species or healthy ageing. The solution may be a patentable, commercial product or a policy proposal. Weekly workshop sessions will be held for the whole class which will include presentations from external speakers on topics such as intellectual property, project management and negotiating skills. Each team will choose a leader who will be responsible for organising regular meetings in which ideas are developed, tasks assigned and information gathered. The team will produce a report in the form of a patent application or policy document which will form part of the module assessment. The remainder of the assessment will be based on an oral presentation. Peer-assessment will be used to adjust tutors' marks according to individual contribution to the project.
This module aims to provide an understanding of the organisation of the human genome, how disease genes are mapped and how mutations are identified leading to the development of diagnostic tests. The impacts of massively parallel next generation DNA sequencing, microarrays and SNP genotyping on gene discovery and disease diagnosis are examined. The application of modern genetic techniques to identifying susceptibility genes for complex, multifactorial traits will also be studied. A range of diseases will be examined in detail both in lectures and in case study workshop sessions. The final lecture looks at gene therapy and considers the future for treatment of genetic disorders. The practical session aims to give students an opportunity to study their own DNA in a forensics scenario, using techniques that are widely applicable in modern molecular genetics.
Students will be introduced to the importance of molecular, metabolic and cellular interactions within parasitic protists, and between a range of parasitic protists and their hosts.
The course will provide students with an understanding of how the life cycle strategies used by protists enable them to gain access to, and survive within, the host as well as the impact that protist parasites have on human health. Practicals will provide an opportunity for students to apply immunological skills to investigate the host-parasite interaction.
Microbiology for the biomedical scientist comprises screening samples to identify and assess microbiological pathogens that cause disease and, enable front line medical staff to choose the correct therapy for successful eradication of the infection. Increasing numbers of these infections are community acquired and many are contracted from, or in, the environment. The environment therefore plays an increasing role in the life cycle and ecology of many pathogens. This in turn, is having an increasing impact on human health and national health services. The increase is a combination of changing environmental conditions (such as land use changes, global warming) and an ever evolving microbial community, most of which do not harm but a few can cause mild to fatal diseases when the opportunity arises. Also cycling in the environment are obligate pathogens which will cause infections if contracted. Furthermore, there are new diseases emerging (e.g. Ebola) and others thought to have been controlled are now re-emerging such as cholera. Using specific microbial pathogens as examples, this module examines the factors and interactions that allow microbial infections to be transmitted from the environment to humans and how their life cycle plays an important role in their emergence, persistence, transmission and infection. It also examines antibiotic resistance: how it has emerged, the different types of resistance, its management and the complications that it imposes on the treatment of these diseases.
Assessment:
1. Exam: 2 hour paper with two questions in sections A and B. Students are required to answer one question from each.
2. Coursework is an extended essay of 2000 words based on the lectures and field trip. The title will be announced in the first lecture.
Understanding how life works depends to a great extent on understanding how proteins work. Thanks to the Human Genome Project, we now have a catalogue of all the proteins that are encoded in the human genome. This might be thought of as life’s toolbox. The next questions are: how do those tools work; how do they interact with each other; and how have they evolved over the billions of years of evolutionary time that have led to us? This module introduces modern techniques for the study of protein structure, function and evolution.
Lectures cover: structural-functional relationships in proteins; methods for detecting the action of Darwinian selection in protein evolution; methods for reconstructing the evolutionary events that have led to present-day proteins; and, the new lab techniques that are allowing us to study protein function on a large scale. In the practical sessions, students will gain hands-on experience of molecular phylogenetics – the main tool for studying evolution at the molecular level – as it is applied to proteins. Assessment is by an exam and a coursework essay on a protein of your choice, giving students a chance to apply their new knowledge of protein biochemistry to any of their own areas of interest in biology.
Core
core modules accordion
This module introduces principles involved in the discovery and development of a new drug from initial concept to the identification of a candidate compound to first use in man. This knowledge is extended by learning how the pharmaceutical industry and small biotech companies use contemporary scientific advances to identify drug targets and develop new drugs. How new drug entities are tested, developed and ultimately reach the market is examined using ‘real life’ examples in the form of case studies.
Together with BIOL469 MSci Research Project, the projects comprise half of the final year assessment for MSci schemes. The literature review provides the opportunity for students to explore an area of bioscience, related to the research project, in depth. Published articles are summarised and critically reviewed to identify gaps in current knowledge and to provide the background for the student’s own research. The literature review consists of a 4,000 word dissertation which is written during the autumn term of the final year and submitted along with the research project in the summer term.
Together with BIOL470 MSci Project Literature Review, the projects comprise half of the final year assessment for MSci schemes. The research project allows students to spend an extended period of time in the research lab of a member of academic staff, carrying out original research and working alongside PhD students and other researchers. Students develop skills learned in the third year project to enhance student independence and provide experience of the laboratory based research environment. Students develop an adaptable, flexible, and effective approach to research questions and the ways in which their practical skills can be used to address such questions. Results of the research are reported in an 8,000 word dissertation submitted during the summer term of the final year.
Optional
optional modules accordion
This module aims to encourage students to access and evaluate information from a variety of sources and to communicate the principles in a way that is well-organised, topical and recognises the limits of current hypotheses. It also aims to equip students with practical techniques including data collection, analysis and interpretation.
This module introduces the concept of protein misfolding disorders, and expands this through consideration of two major neurodegenerative diseases; Alzheimer’s disease and Parkinson’s disease. The role of oxidative stress and proteases in neurodegenerative diseases is covered in detail, before examining the role of lipids in various brain disorders. The module also considers how animal models can be used to study both normal brain ageing and neurodegenerative diseases.
The aim of this module is to provide a broad understanding of the human immune system, more detailed knowledge of human immunological disorders and the application of cutting edge immunological research to biomedical science and clinical practice. Technical skills associated with this course include experience and data analysis of advanced flow cytometry techniques and insight into how research findings are reported and presented to the scientific community and media.
This module aims to provide students with a broad understanding of a range of pathogens and their impact on human health, and to understand how the human body responds to these challenges. Students are also introduced to the new challenges faced by healthcare systems including emerging/re-emerging infectious diseases and antibiotic resistance, and so develop an awareness of the challenges and realities of controlling infectious diseases. Students also develop an appreciation of the role of epidemiological and mathematical modelling in predicting and controlling pathogenic organisms.
This module provides insight into the underlying molecular events in the development of cancer, how cancers spread through the body and explains how an understanding of the molecular basis of cancer has led to the development of novel cancer treatments. Workshops allow students to study the aetiology and progression of one particular type of cancer in depth, and also to understand how cancer is studied in practice.
Fees and funding
Our annual tuition fee is set for a 12-month session, starting in the October of your year of study.
We set our fees on an annual basis and the 2025/26 home undergraduate
entry fees have not yet been set.
There may be extra costs related to your course for items such as books, stationery, printing, photocopying, binding and general subsistence on trips and visits. Following graduation, you may need to pay a subscription to a professional body for some chosen careers.
Specific additional costs for studying at Lancaster are listed below.
College fees
Lancaster is proud to be one of only a handful of UK universities to have a collegiate system. Every student belongs to a college, and all students pay a small college membership fee which supports the running of college events and activities. Students on some distance-learning courses are not liable to pay a college fee.
For students starting in 2025, the fee is £40 for undergraduates and research students and £15 for students on one-year courses.
Computer equipment and internet access
To support your studies, you will also require access to a computer, along with reliable internet access. You will be able to access a range of software and services from a Windows, Mac, Chromebook or Linux device. For certain degree programmes, you may need a specific device, or we may provide you with a laptop and appropriate software - details of which will be available on relevant programme pages. A dedicated IT support helpdesk is available in the event of any problems.
The University provides limited financial support to assist students who do not have the required IT equipment or broadband support in place.
Study abroad courses
In addition to travel and accommodation costs, while you are studying abroad, you will need to have a passport and, depending on the country, there may be other costs such as travel documents (e.g. VISA or work permit) and any tests and vaccines that are required at the time of travel. Some countries may require proof of funds.
Placement and industry year courses
In addition to possible commuting costs during your placement, you may need to buy clothing that is suitable for your workplace and you may have accommodation costs. Depending on the employer and your job, you may have other costs such as copies of personal documents required by your employer for example.
The fee that you pay will depend on whether you are considered to be a home or international student. Read more about how we assign your fee status.
Home fees are subject to annual review, and may be liable to rise each year in line with UK government policy. International fees (including EU) are reviewed annually and are not fixed for the duration of your studies. Read more about fees in subsequent years.
We will charge tuition fees to Home undergraduate students on full-year study abroad/work placements in line with the maximum amounts permitted by the Department for Education. The current maximum levels are:
Students studying abroad for a year: 15% of the standard tuition fee
Students taking a work placement for a year: 20% of the standard tuition fee
International students on full-year study abroad/work placements will be charged the same percentages as the standard International fee.
Please note that the maximum levels chargeable in future years may be subject to changes in Government policy.
Scholarships and bursaries
You will be automatically considered for our main scholarships and bursaries when you apply, so there's nothing extra that you need to do.
You may be eligible for the following funding opportunities, depending on your fee status:
Unfortunately no scholarships and bursaries match your selection, but there are more listed on scholarships and bursaries page.
Scheme
Based on
Amount
Based on {{item.eligibility_basis}}
Amount {{item.amount}}
We also have other, more specialised scholarships and bursaries - such as those for students from specific countries.
The information on this site relates primarily to 2025/2026 entry to the University and every effort has been taken to ensure the information is correct at the time of publication.
The University will use all reasonable effort to deliver the courses as described, but the University reserves the right to make changes to advertised courses. In exceptional circumstances that are beyond the University’s reasonable control (Force Majeure Events), we may need to amend the programmes and provision advertised. In this event, the University will take reasonable steps to minimise the disruption to your studies. If a course is withdrawn or if there are any fundamental changes to your course, we will give you reasonable notice and you will be entitled to request that you are considered for an alternative course or withdraw your application. You are advised to revisit our website for up-to-date course information before you submit your application.
More information on limits to the University’s liability can be found in our legal information.
Our Students’ Charter
We believe in the importance of a strong and productive partnership between our students and staff. In order to ensure your time at Lancaster is a positive experience we have worked with the Students’ Union to articulate this relationship and the standards to which the University and its students aspire. View our Charter and other policies.
Our historic city is student-friendly and home to a diverse and welcoming community. Beyond the city you'll find a stunning coastline and the picturesque Lake District.