We welcome applications from the United States of America
We've put together information and resources to guide your application journey as a student from the United States of America.
Overview
Top reasons to study with us
11
11th for Geography and Environmental Science
The Times and Sunday Times Good University Guide (2025)
13
13th for Geography
The Complete University Guide (2025)
16
16th for Geography
The Guardian University Guide (2025)
Geoscientists are increasingly recognised as playing a crucial role in meeting global challenges such as climate change, sustainable development, resource provision, and natural hazards. By placing your geoscience training within the broader context of the environment, you will gain knowledge of both the challenges and the potential solutions.
Within your degree, you will consider both natural and man-made environments, to explore the main factors and processes that control today’s environment, how the environment has evolved to its current state and how environmental conditions may change in the future.
In addition, your degree will draw upon the expertise of a number of our staff who specialise in Earth science including volcanology, geophysics, hydrogeology and glaciology, who deliver an exciting range of specialist topics to choose from.
Your first year will address many of the fundamental themes of the Earth and environmental sciences, from understanding geology to learning about the atmosphere, weather and climate. Specialisation begins in the second year when we introduce Earth science-focused topics, and this degree gives you the flexibility to focus on a specific topic area, for example, geological hazards, soil science, environmental radioactivity or glacial systems.
In your second year, core modules will prepare you for your third year dissertation project, which is an opportunity to research a subject that really interests you. You may choose a project with a substantial fieldwork component or, alternatively, conduct laboratory-based research or computer modelling.
To prepare you for your work placement year, our Careers and Placements Team will provide advice and guidance on: the skills required to create effective CVs, cover letters and applications; tips and techniques on how to make an impact at interviews and assessment centres; how to create a relevant digital profile; and how to research employers and career sectors of interest. In addition, there is great emphasis placed upon developing self-awareness and on how to present yourself in a professional manner to employers. This optional provision will be delivered via a blend of traditional and digital methods including face-to-face workshops, online webinars, e-courses and 1:1 appointments.
You will spend your third year on placement, which may be in a science or non-science position. The placement offers you the opportunity to work as a full-time employee of the organisation whilst still receiving both academic and pastoral support from Lancaster University.
The University will use all reasonable effort to support you to find a suitable placement for your studies. While a placement role may not be available in a field or organisation that is directly related to your academic studies or career aspirations, all placement roles offer valuable experience of working at a graduate level and gaining a range of professional skills. If you are unsuccessful in securing a suitable placement for your third year, you will be able to transfer to the equivalent non-placement degree scheme and continue with your studies at Lancaster, finishing your degree after your third year.
For your second and third year, modules will build upon the themes from year one, and you will have the opportunity to take part in popular field courses, including to Mount Etna in Sicily. There, you will study volcanic processes and learn how the local population can manage the impacts of volcanic phenomena. You will also have the opportunity to engage in fieldwork at Carrock Fell in the scenic Lake District World Heritage Site and take further optional residential modules, from studying glacial processes in Switzerland to environmental challenges in Croatia.
Throughout your degree, considerable weight is placed upon the transferable skills that are highly valued by potential employers. For example, in addition to your subject knowledge, you will also gain communication and information technology skills and will become familiar with data handling and environmental sampling and analysis.
Our community
We offer support in a variety of ways to ensure that you achieve your full academic potential. You’ll be assigned a student mentor to help you settle in and a specific member of staff who will act as you Academic Tutor throughout your degree by offering study support through regular one-to-one meetings. You can also receive help with any aspect of your degree from your Director of Studies, teaching coordinators and student learning advisor. We strive to inspire and encourage our future Earth and environmental scientists.
From our flexible degree pathways to our incredible field trip opportunities, hear why our students love studying Earth and Environmental Sciences at Lancaster.
Course accreditation
This programme is accredited by the Community for Environmental Disciplines in Higher Education (CEDHE), the education committee of the Institution of Environmental Sciences (IES). A programme accredited by CEDHE is assured to meet high standards, contain a strong component of practical, field and theoretical activities, and has excellent opportunities for training, work experience and links to the professional environmental sector. Students enrolled on CEDHE-accredited programmes can apply for free Student Membership of the IES and for a fast-track route to membership once they graduate. This programme is aligned with the academic requirements for Registered Environmental Practitioner (REnvP) and starts graduates on a route towards becoming a Chartered Environmentalist (CEnv) or Chartered Scientist (CSci).
Earth and environmental sciences are pivotal in helping today’s society take on the most pressing environmental challenges. This increasingly important area of study means that more and more global jobs are becoming available, and as a graduate of the environmental sciences, you can make a difference using your specialist knowledge of the local, regional, and global impact our actions have on the world, and vice versa. Environmentally focused careers include Environmental Consultant, Weather Forecaster, Conservation Officer, Sustainability Consultant, Toxicologist, Wastewater Manager, Hydrologist and many, many more. You may wish to continue in academia or work in a non-environmental role where your skills in problem-solving, critical thinking, data handling, project management and commercial awareness make you an in-demand graduate. Graduates from our courses are also well-paid, with the median starting salary of graduates from Lancaster Environment Centre being £24,347 (HESA Graduate Outcomes Survey 2023).
Here are just some of the roles that our BSc and MSci Earth and Environmental Science students have progressed into upon graduating:
Field Scientist – Thames Water
Strategic Planning Manager – United Utilities
Junior Volcanologist – GeoTenerife
Environmental Business Analyst – CCm Technologies
Sustainability and Climate Change Consulting Associate – PwC UK
Lancaster University is dedicated to ensuring you not only gain a highly reputable degree, you also graduate with the relevant life and work based skills. We are unique in that every student is eligible to participate in The Lancaster Award which offers you the opportunity to complete key activities such as work experience, employability/career development, campus community and social development. Visit our Employability section for full details.
Skills for your future
A degree in earth and environmental sciences will provide you with both a specialist and transferable skill set sought after by employers across a wide range of sectors.
An adventure for Harry
I have recently returned from a year abroad in Canada, where I studied an Earth Science concentration at the University of Waterloo. Studying abroad had always been far outside of my comfort zone, as I had grown up in a small corner of the North East of England, and had not been particularly well travelled in years prior. I had decided to transfer onto the study abroad variant of my course in the summer before starting first year, after researching the programme further and finding that it would enable me to experience new cultures abroad, and to travel and explore a country which I had never been to before.
By completing a year abroad, I believe that my social confidence has definitely increased, and I feel more resilient than before. Of course, the teaching I have received has been helpful but this opportunity has also opened the door to a wider cultural understanding. The experience has also enabled me to network with students and researchers abroad and has inspired me to consider continuing my studies in Canada, under the supervision of the faculty I worked with whilst I was there. This opportunity has truly been a once-in-a-lifetime experience.
Harry Barnes, BSc Earth and Environmental Science (Study Abroad)
An adventure for Robbie and Anna
LEC students Anna and Robbie tell us all about their time spent in Croatia as a part of one of their third-year modules, in which they had the opportunity to explore the Istrian peninsula of Croatia and its approaches to water management.
Entry requirements
These are the typical grades that you will need to study this course. You may need to have qualifications in relevant subjects. In some cases we may also ask you to attend an interview or submit a portfolio. You must also meet our English language requirements.
ABB. This should include one science subject from: Biology, Chemistry, Computing, Environmental Science, Geography, Geology, Human Biology, Mathematics, Physics or Psychology.
Considered on a case-by-case basis. Our typical entry requirement would be 30 Level 3 credits at Distinction plus 15 Level 3 credits at Merit, but you would need to have covered appropriate subject content.
We accept the Advanced Skills Baccalaureate Wales in place of one A level, or equivalent qualification, as long as any subject requirements are met.
DDM to include sufficient science. We require Distinctions in the majority of relevant science units. Not all science-based BTECs will include sufficient relevant science units. Please contact the Admissions Team for further advice.
Our typical requirement would be A level grade B plus BTEC(s) at DD, or A levels at grade BB plus BTEC at D, but you would also need to meet the subject requirements.
32 points overall with 16 points from the best 3 HL subjects including one HL science subject at grade 6
We are happy to admit applicants on the basis of five Highers, but where we require a specific subject at A level, we will typically require an Advanced Higher in that subject. If you do not meet the grade requirement through Highers alone, we will consider a combination of Highers and Advanced Highers in separate subjects. Please contact the Admissions team for more information.
Considered on a case by case basis. T level in Science may be accepted at Distinction, with an A in core component.
Important information
If you do not have A level Chemistry or an equivalent qualification, you will need to take our Introduction to Environmental Chemistry module in your first year. If you do not have A level Mathematics or an equivalent qualification, you will need to take our Numerical Skills II module in your first year. If you do not have at least GCSE Mathematics 7/A, you will be required to take Numerical Skills I in addition to Numerical Skills II. These chemistry and mathematics modules are not replacements for A levels, but are skills modules taught on a need-to-know basis to support you in the rest of your degree. Further details regarding these modules can be found in the Course structure section of this page.
Contact Admissions
If you are thinking of applying to Lancaster and you would like to ask us a question, please complete our enquiry form and one of our team will get back to you.
International foundation programmes
Delivered in partnership with INTO Lancaster University, our one-year tailored foundation pathways are designed to improve your subject knowledge and English language skills to the level required by a range of Lancaster University degrees. Visit the INTO Lancaster University website for more details and a list of eligible degrees you can progress onto.
Contextual admissions
Contextual admissions could help you gain a place at university if you have faced additional challenges during your education which might have impacted your results. Visit our contextual admissions page to find out about how this works and whether you could be eligible.
Course structure
Lancaster University offers a range of programmes, some of which follow a structured study programme, and some which offer the chance for you to devise a more flexible programme to complement your main specialism.
Information contained on the website with respect to modules is correct at the time of publication, and the University will make every reasonable effort to offer modules as advertised. In some cases changes may be necessary and may result in some combinations being unavailable, for example as a result of student feedback, timetabling, Professional Statutory and Regulatory Bodies' (PSRB) requirements, staff changes and new research. Not all optional modules are available every year.
This module provides an introduction to atmospheric science, giving you an understanding of the physical behaviour of the atmosphere through both meteorological theory and observation. We investigate the structure and characteristics of the atmosphere and explore the physical principles which govern its behaviour and which lead to the everyday experience of weather. We also look at the wider role of the atmosphere as an important component of the Earth's climate system.
Practical sessions give you an opportunity to take your own measurements of a wide variety of meteorological variables, to interpret weather charts and satellite images, and to investigate the scientific principles which underpin the way our atmosphere and climate system work.
Students will be introduced to key biogeochemical processes that have a major impact on the lithosphere, hydrosphere and atmosphere during this module. They will learn how biogeochemistry has shaped the Earth's environment.
The importance of biogeochemical processes will be demonstrated through a consideration of their relevance to the environmental discipline of Earth System Science. The processes will be illustrated using examples of biogeochemical cycles of various elements, on various spatial scales, including carbon. How anthropogenic perturbations have dramatically influenced the biogeochemical cycles of different elements will also be discussed.
The concept of breaking the environment down into different reservoirs or compartments with simple box-modelling concepts will be introduced to students. In addition, the interesting concepts of chemistry shaping biology and biology shaping chemistry allowing Earth's evolution will be explored along with the Gaia Hypothesis concept. On a practical note, students will develop their report writing and various numerical and quantitative laboratory skills.
Students will also undertake a number of basic procedures in a chemical laboratory, including preparing solutions, measuring pH and using bench-top instruments. Further to this, they will write scientific reports, based on laboratory experiments to simulate environmental weathering processes, involving numerical manipulation of the resulting data; and will learn to interpret chemical equations.
This module provides an introduction to environmental processes and their impacts in a variety of different environments. We discuss the physical processes governing the Earth's global climate system and their influence on recent and future patterns of climate and environmental change. We investigate the Earth’s surface materials and the laws that govern the behaviour of fluids, and how these affect environmental flow and fluid transport processes. We also explore the processes which influence the development of soils and associated ecosystems at the land surface, including deposition and erosion processes.
This module investigates the geological processes and materials that shape our natural world. Assuming no prior knowledge of geology, you will gain valuable experience of volcanic, sedimentary and deformation processes – both theoretical and practical. You will learn to identify common rocks and minerals and describe the geological processes that formed them. Five topics are studied: minerals as building blocks of rocks; volcanism and plutonism; metamorphism; sedimentation, and deformation. This will enable you to interrogate the rock record to understand how our planet evolved in the past and how it may continue to do so in the future. This module is an ideal starting point if you are aiming for a career in the oil industry, hazard management, town planning, cartography, environmental consultancy, etc, but is aimed at anyone with a broad interest in the way the Earth works and who is curious to know more.
The global environment and human society are now threatened by unprecedented changes resulting from human activities such as intensive agriculture and fossil fuel combustion, as well as facing natural hazards like volcanic eruptions and climatic extremes. This module introduces you to the major contemporary environmental issues and the complexities associated with researching, explaining and managing the Earth's environment. It provides a broad foundation in the skills required to contribute to future understanding and management of global environmental challenges. You will gain a clearer understanding of the connections between social, environmental and biotic processes and explore possible solutions for key environmental issues.
Floods and water pollution are common side effects of our economic development. In this module we explore how to study rainfall, groundwater, evaporation and rivers and how to use this information to solve problems in the water environment. To introduce you to the subject of hydrology we use two case studies. The first is the impact of rainforest logging on the water environment in northern Borneo. In the second case study we look at how hydrology can provide insight into the water pollution risks from a proposed radionuclide repository at Sellafield.
A fieldtrip to gauge stream-flow in White Scar Cave and a number of laboratory practical sessions will help you to relate the hydrological theory to the solution of real-world environmental problems.
Billions of people are at risk from natural hazards, and the cost of natural disasters to the global economy is steadily increasing. This module examines the distribution of, and hazards associated with, volcanic eruptions, earthquakes, tsunamis, hurricanes, tornadoes and floods. The underlying geological and meteorological processes are described, along with the most commonly-used intensity scales and monitoring and forecasting methods. Students will then consider how human vulnerability to these hazards can be reduced, drawing upon risk mitigation case studies from around the world.
In the practicals, students will apply simple equations and measurements from a variety of maps and graphs to understand and quantify concepts such as scale, speed and intensity of hazardous phenomena. They will be taught to contour spatial data by hand, and interpret the deformation of a volcano in terms of magma chamber depth. Students will learn about disaster preparedness through playing a team-based game, and will consider a wide range of potential careers in which knowledge of natural hazards can be applied.
The coursework will develop students’ scientific writing skills and ability to integrate their own figures and interpretations with information derived from their background reading.
This module takes you on a journey to the centre of our planet, investigating evidence for the composition and behaviour of the Earth's crust, mantle, outer core and inner core. You will gain an overview of the Earth’s 4.5 billion year history, and understand current theories which explain how plate tectonics and volcanic eruptions have shaped the Earth’s surface and influenced the atmosphere, climate and evolution of life.
Optional
optional modules accordion
Introducing the nature of biological diversity and the patterns of distribution of organisms on global, regional and ecosystem scales, students discover the underlying causes of the observed biodiversity patterns and the main current threat to biodiversity. The reasons why species become extinct is explored and then the reasons why species should be preserved. Students will be able to outline the criteria that can be used to identify species and areas of high conservation importance.
Fieldtrips take place on campus, where students will look at sampling techniques and biodiversity, and to sites of special conservation interest in the Arnside and Silverdale AONB. There will also be an excursion to Blackpool Zoo.
This module provides an introduction to the skills used by geographers to analyse problems in both human and physical geography. The module begins by reviewing the principles of cartography and recent developments in the electronic delivery of map-based information through mobile devices and web-based services. This is followed by an introduction to Geographic Information Systems (GIS) which provide facilities for the capture, storage, analysis and display of spatially-referenced information. Later in the module we introduce remote sensing and explain its relationship to GIS. We also consider quantitative and qualitative techniques of analysis (which are taught within the context of contemporary conceptual approaches), with emphasis placed on the study of both environmental and societal processes.
This module examines how the biosphere reacts to environmental change. It concentrates on the responses to changes such as increasing drought, global warming, ozone depletion, and air pollution. Emphasis is placed on understanding plants as the driving force for the effects of environment change on other organisms within terrestrial ecosystems. This will range from consideration of changes in complex natural ecosystems through to effects on humans, through changes in global food production. The module will also consider the direct effects of environmental change on human populations.
You will learn to describe the effects of global warming and pollution on plants and terrestrial ecosystems as well as the links between basic plant physiology and the consequences of environmental change. We also explore the direct and indirect effects of environmental change on human populations. You will take part in workshops that look at the effects of the environment on carbon fixation and water use, and human health and environment change.
This module provides an introduction to the chemistry of environmental systems for students without A-level chemistry. It focuses on the fundamental chemical behaviour of elements and compounds especially as they relate to the environment. Students will learn the basic chemical characteristics of substances and understand what is meant by a chemical reaction and why they occur.
Workshops are an important feature of the course where students will learn about atomic structure, molecular properties and instrumental chemical analysis.
Depending upon the degree programme, students who hold an A-level in chemistry do not have to take this module and as such will have a further optional module to choose from.
This module is designed to give students a foundation in the numerical skills required for studying environmental science. It focuses on developing explicit links between mathematical analysis and the physical processes that govern environmental systems. Workshop sessions with members of teaching staff provide an informal atmosphere for you to refresh your mathematical knowledge, to learn how numerical skills can enrich your understanding of the environment, and to develop a scientific approach to solving a range of environmental problems. We employ environmental case studies throughout the module and analyse a number of environmental data sets.
Depending upon degree programme, students who hold an AS-level in maths do not have to take this module and as such will have a further optional module to choose from.
Following the earlier module ‘Numerical Skills I’, students will gain a more complete understanding of the numerical skills required for studying the environment. Environmental case studies will be used in a mixture of lectures and workshops where students will learn to manipulate trigonometric equations, describe the basic principles of calculus and solve simple equations. These concepts will be applied to environmental examples including radioactive decay, atmospheric pressure scale height and chemical kinetics.
Depending upon degree programme, students who hold an AS-level in maths do not have to take this module and as such will have a further optional module to choose from.
Core
core modules accordion
Through lectures and workshops, students will encounter a number of different topics in the module, including the nature of aquatic systems and the properties and characterisation of substances present in natural waters, chemical weathering and clay minerals, and sorption phenomena and colloids. Students will also engage in an acid rain case study as part of the module.
Students will understand the facts and principles of the nature of aquatic systems from a chemical standpoint. They will gain the ability to explain the main processes and factors governing the chemical composition of natural waters and will develop a practical understanding of how to apply these concepts to a range of case studies. Students will be able to assess aspects of various analytical methods and analytical quality control, and will know how to carry out pH measurements and atomic absorption measurements of metals and acid-base titrations.
This module contains a series of four interactive workshops that cover all stages of career planning from exploring options to succeeding at recruitment and selection. It provides knowledge of the graduate labour market and techniques for developing personalised career plans to successfully and confidently transition into work or further study.
Students will also come to develop an understanding of the benefits of professional networking, and how to access opportunities for connecting with others in a professional manner. To this end, an effort to create a 'personal brand', which includes an awareness of both strengths and areas for development, is encouraged and can be extremely beneficial after graduation.
The module will be delivered during the summer term (weeks 5 to 8) through a number of timetabled sessions which will help to accommodate a variety of other commitments such as dissertations and summer exams.
This module teaches students how to apply hydrological, geologic and surveying techniques in both the laboratory and out in the field. Data gained during training in the lab and in the field are used to develop interpretation skills of local environmental processes, in particular to assess the present and future impacts on water quality of a disused tungsten mine at Carrock Fell in the English Lake District.
Students will learn outdoor field skills and lab skills with respect to chemistry techniques. This will include navigation and field conduct; water chemistry analysis; how to record information in a field note book; writing skills, in particular the production of properly formatted, well-structured reports; team skills and job application skills.
The aim of this module is to introduce students to understanding the scientific method, designing experiments, and collecting data in an unbiased scientific manner, analysing it using robust statistical techniques and presenting findings in a clear and concise form. Students will be provided with the skills they will need to successfully complete their dissertation projects. They are encouraged to critically appraise information, conduct a wide range of statistical analyses and to present and critically analyse data.
Students will be able to relate the notion of the scientific method to their own scientific endeavour, and will gain the level of knowledge required to measure, describe and discuss the varieties of environmental and ecological systems in the study of natural systems.
Students will learn to design and execute experiments which distinguish effectively between variation due to experimental effects and underlying uncontrolled variation, and will also understand the application of statistical tests to analyse data, taking into account the underlying assumptions of those tests, as well as the uses of computer based statistical packages, such as SPSSx) to analyse data. Critical skills developed on this module will enable students to report their findings in a style appropriate for their audience.
This module is designed for students to learn geologic mapping and to further their understanding of geologic and geomorphologic processes, and Earth science field skills in an outdoor setting. Taught mainly as a residential course, based on the Isle of Mull in Scotland, students learn how to collect field data in order to make a single solid geologic map. Students are taught to describe, sketch, photograph and map key localities. They are taught geologic mapping skills and safety in the field. As well as gaining familiarity with one particular field area students also visit some of the oldest rocks in the UK and the rocks that formed during the opening of the Atlantic Ocean on the island of Staffa. Therefore knowledge and understanding of a wide range of geologic terrains in different geographic environments is gained as well as specific field skills.
On completing this module, students will have developed the knowledge required to apply the techniques of geologic map making, and will understand the uses of geologic maths. Students will gain the practical skills required to make scaled maps, write comprehensive field notes and plot structural data on maps, and will be able to recall key aspects of the geological history of the British Isles, from the Precambrian to the present day.
A record of Earth’s geological history – its metamorphic, igneous, sedimentary and tectonic processes, and its surface paleogeography and climate – can be extracted from the analysis and interpretation of its rocks, minerals and fossils. Expanding on an earlier module in geology, this module examines such processes and products (rocks), focusing on how to interpret the geological history from the rock record. This is a strongly practical-based course, designed to provide students with key geologic skills required to interpret the rock record. Students will develop skills in the identification of minerals in thin section, identification of rocks and fossils in hand specimen, geologic map interpretation, use of topographic and geologic maps and field note books, field sketches, compass clinometers and stratigraphic logging, in addition to a range of skills in synthesising data in order to produce overall interpretations.
Students will gain the necessary skills required to describe and classify rocks in a specimen, and identify minerals in thin section. Students will develop a working understanding of how rocks are dated, and will utilise stereonets to extract sedimentological and structural data. Additionally, students will be able to interpret geologic maps, including sedimentological and structural data, and will determine past sedimentary, igneous and metamorphic environments of formation and the processes by which deformation and exhumation occur, along with developing the ability to apply Earth science field techniques in order to unravel the geologic history of an area.
This module aims to introduce and demonstrate the nature and properties of soils in an environmental context. It will provide an introduction to soil formation, soil description (including field work), chemical and physical properties, and biology, which will lead to the application of soil science to a variety of practical problems. This module gives exciting grounding in the nature and importance of soils in context with wider environmental issues. As well as detailed knowledge of fine scale soil processes, students will learn interdisciplinary thinking that helps them connect different and complex strands of knowledge from around the earth system.
Students will be able to describe the nature and roles of soils in the environment, and will gain the level of understanding required to describe the nature and role of soils in the environment. Successful students will be able to give a basic account of soil chemical and physical properties, as well as soil biology, and will develop the ability to discuss applied aspects of soils, specifically nutrient recycling and carbon storage.
Optional
optional modules accordion
This module provides a deeper understanding of atmospheric physics and chemistry, and begins by laying the foundations with the physical properties of the atmosphere and how they affect the movement of air. A major objective is to bring familiarity with meteorological analyses and forecasts. The module covers topics varying from small scale flow in the atmospheric boundary layer affecting pollutant transport to global scale circulation of the atmosphere including important phenomena such as monsoons and El Niño.
Practical sessions and a field trip to the Hazelrigg meteorological station will enable students to gain familiarity with mid-latitude synoptic systems, cyclones and fronts. This is built on by giving students sufficient knowledge about the chemical composition of the Earth's atmosphere, of the fluxes of C, S and N to and from the atmosphere and of the main chemical processes that occur in the atmosphere to allow them to understand how the Earth's atmosphere 'works' chemically within the framework of physical process already covered.
Successful completion of this module will show evidence of students’ ability to describe the structure and behaviour of the atmosphere with reference to meteorological observations and pathways of atmospheric transport from analysis of meteorological charts, in addition to the range of skills required to draw schematic diagrams of the general tropospheric circulation, whilst identifying the major processes (and underlying forces) that drive this circulation. Students will gain knowledge of the methods necessary to calculate atmospheric quantities, such as potential temperature, and use the results of these calculations to describe the state of the atmosphere. Students will also be equipped with the level of understanding needed to list the components of the unpolluted troposphere, including the trace gases of chemical significance, and draw annotated schematic diagrams of the atmospheric cycles of carbon, nitrogen, and sulphur.
The module aims to introduce concepts, plus measurement and analytical techniques used by professional hydrologists to solve water-related problems in catchments (notably flood forecasting and water quality remediation). Through a series of lectures and workshops, students can expect to study topics including the processes, measurement and analysis of rainfall, evapotranspiration and water quality measurement and treatment.
The module aims to develop higher level scientific skills in measuring the natural environment, quantifying dynamic processes numerically and digesting scientific literature. Students will gain the skillset required to describe catchment hydrological processes in a quantitative manner, therefore utilising a developed understanding of fundamental hydrological processes, their field measurement ('hydrometry') and basic aspects of dynamic catchment modelling. Additionally, students will gain a range of transferrable academic skills, such as the ability to use data and basic models to derive solutions, and applying subject-specific literature to help understand theory and limitations of theory, measurements and models.
The provisioning of affordable, low carbon and secure energy is a central challenge for the UK Government. This module provides an overview of energy technologies and the energy system within the UK. Students will focus on each of the key energy technologies learning how to detail its importance, its forms and uses, how much is produced, and its cost and environmental impact. Relevant policies and its current role in the energy mix will be outlined while energy distribution networks, overall policy drivers and future energy mixes will also be explored.
This module will equip the students with an understanding of the economic, political, technological, resource and environmental factors that affect decision making, which while specific to energy are applicable to the provisioning of other resources. It will offer the opportunity to think broadly across UK energy provisions and options for the future. The students will also get the chance to build on their numerical skills and understanding of energy units. They will also critically evaluate the importance of competing factors and summarise a complex concept in an easy to interpret infographic format.
This module provides students with scientific numeracy skills going beyond the use of spreadsheets. It focuses on data pre-processing and QA, processing and visualization, mainly for use with dissertation work which provides the focus and immediate motivation. Students will discover introductory elements of Matlab and Simulink, currently a de facto visualisation and numerical processing standard. Some comparisons to other programming languages, in particular Fortran and C, are provided. The main programming elements are introduced and used in examples: data input, processing, output in numerical and graphical forms, programming tools and structures (loops, conditional statements and other flow control). Additionally, the module introduces selected principles of dynamic systems modelling applied to environmental systems in the form of worked examples and case studies.
Among the range of skills developed when completing this module, students will gain the ability to communicate with programming professionals on a basic level. Students will develop practical understanding of how to solve basic data processing problems using MATLAB or other programming languages, and will gain the necessary skills needed to use a sophisticated, programmable data presentation and visualisation tool. Additionally, students will learn to recognise the fundamental features of computer programming languages, and will be able to devise, modify, run and debug simple MATLAB programs, with the potential to use MATLAB as a comprehensive programming language.
Eco-innovation, being the development of new products, processes or services that support business growth with a positive environmental impact, is one of the key enabling instruments identified by the European Union for the transition to a more resource efficient economy. It is embedded in the Europe 2020 strategy for supporting sustainable growth. This module will provide several case studies which outline the way in which businesses have applied eco-innovation in practice Students will gain knowledge of the key approaches to, and models of, eco-innovation in a range of business and policy contexts in addition to a reinforced understanding of how innovative ideas can be turned into practical solutions for complex socio-environmental problems, and how different business models and financing approaches can be used to make the solution commercially viable and potentially profitable.
Students will gain knowledge of eco-innovation and understand how the concept relates to business opportunities for environmental goods and services. In addition, students will gain the knowledge and skillset required to analyse how both small businesses and large global organisations apply eco-innovation into their business planning, whilst
Evaluating business opportunities related to the environment in the context of products and services to address flooding or other complex problems. Students will learn how to create proposals for eco-innovation, and prepare presentations for a panel of experts, and will develop the necessary level of understanding required to analyse technical, financial, and environmental information from a wide range of sources in order to comprehend and evaluate strategies to address complex environment-society problems and challenges.
Recent emphasis on global change and biodiversity has raised awareness of the importance of species and their interactions in determining how sustainable our lifestyle is. This module explores the factors that drive population and community dynamics, with a strong focus on multi-trophic interactions and terrestrial ecosystems.
Students will be introduced to population ecology and will discover the abiotic factors that regulate populations, life history strategies of populations, competitive interactions within populations, and meta-population dynamics, in addition to an understanding of how species interact both within and across trophic levels. The module exposes students to the belowground system and will look at how the species interactions and soil communities discussed impact on community structure and dynamics. The module aims to give students a fundamental understanding of ecology - such knowledge is essential for informing conservation and sustainable land-use practices, and efforts to mitigate climate change.
In order to complete this module, students will develop the ability to outline the primary factors that drive population dynamics, whilst critically discussing examples, and will reinforce their understanding of the implications of species interactions for community dynamics. Students will also gain a critical awareness of biotic responses and their contribution to climate change.
This module aims to provide students with broad understanding of the discipline of conservation biology. The module starts by defining biodiversity, discussing its distribution in space and time, and its value to humankind, before examining the key anthropogenic threats driving recent enhanced rates of biodiversity loss. The module then focuses on the challenges for conservation of biodiversity at several levels of the biological hierarchy: genes, species, communities and ecosystems, and the techniques used by conservationists at these levels. The final part of the module looks at the practice of conservation through discussion of prioritisation, reserve design and national and international conservation policy and regulation.
Students will develop a range of skills including the ability to discuss the principle threats to global biodiversity and the rationale for biodiversity conservation, in addition to application of a range of metrics to quantify biodiversity. Students will gain a critical understanding of the various approaches to conserving genetic, species and ecosystem diversity, as well as an enhanced knowledge of quantification of popularisation approaches to prioritisation of conservation goals, and how nature reserves can be designed to improve conservation potential.
More data has been generated in the last 2 years than over whole history of humanity prior to this. Of this data, 80% has spatial content. This module is about understanding properties of spatial data, whether derived from the map, an archive or the field or from space. The module will explore how these data are represented in computer systems and how, through spatial integration, new forms of information may be derived. There will be a focus on major sources of spatial data (topographic, environmental, and socio-economic) and their properties, major forms of analyses based on spatial relationships, and on effective communication of spatial data through adherence to principles of map design.
Students will develop an understanding of what makes spatial data special; this will be taught through exposure to data from a variety of primary, secondary, contemporary and historic data across the breadth of the geographic discipline. The module will introduce common forms of spatial analysis and will provide an understanding of which to use under given the situations. Students will learn the principles of map design and effective cartographic communication, as well as gaining practical experience of critiquing digital outputs. Finally, the module will offer students significant 'hands-on' experience of using state-of-the-art GIS software to capture, integrate, analyse and present geographic information.
Core
core modules accordion
You will spend this year working in a graduate-level placement role. This is an opportunity to gain experience in an industry or sector that you might be considering working in once you graduate.
Our Careers and Placements Team will support you during your placement with online contact and learning resources.
You will undertake a work-based learning module during your placement year which will enable you to reflect on the value of the placement experience and to consider what impact it has on your future career plans.
Core
core modules accordion
The dissertation project is an individual and individually supervised extensive project ending in submission of a substantial dissertation report. Students will choose from a set of dissertation research areas or topics based on a LEC-wide list compiled by the module conveyor. There will be regular meetings with dissertation supervisor, and students will develop a specific dissertation topic, along with research questions, aims, objectives and methods. This will be followed by a period of background reading, discussion and planning, before their dissertation drafts are analysed, marked and a final draft of up to 10,000 is submitted in week 11 of the term.
Students must take active involvement in the module and make good use of interaction with the supervisor in order to deepen their subject specific knowledge and ability to work independently. Depending on the discipline, style and topic, students may focus on methods, field techniques, lab techniques, or a combination of computer and software tools.
You will have the option of taking either a Dissertation or a Dissertation with External Partner. However, please note that students taking a Study Abroad year must take the Dissertation option.
This module introduces the underpinning aspects of geophysical and remote sensing techniques used to investigate the Earth's surface and near surface. The techniques covered are illustrated by case studies demonstrating their advantages and limitations, for example, for the investigation of contaminated sites and sites suitable for exploitation (e.g. for minerals or for hydrothermal energy) and for monitoring hazardous regions such as volcanoes. The module delivers a synoptic view of active and passive techniques, seismic, gravity, magnetic, radar and electrical methods for sub-surface characterisation and GPS, radar and laser techniques for surface measurements. The techniques are linked through developing an understanding of measurements in terms of both spatial and temporal coverage and resolution.
Students will develop a range of skills necessary to describe the range of applications of geophysical measurements, and discuss the advantages and disadvantages of different geophysical and remote sensing techniques. Students will gain the practical experience required to assess appropriate measurement strategies for specific environmental problems and identify sources of geophysical measurement error. Additionally, students will be able to relate different geophysical measurements in terms of spatial and temporal coverage and resolution.
Optional
optional modules accordion
This intensive week-long residential fieldtrip to south west Switzerland is a new collaborative third year module, jointly offered by the University of Lausanne and Lancaster University. It is a unique intercultural exchange in knowledge, with Lancaster and Lausanne students working together. The module provides students with training in the design and implementation of research to understand alpine environments. Students will collect significant amounts of field data and focus on one of six interconnected study themes, spanning: alpine climate and hydrology; glacial processes; alpine rivers; streams; soils; and ecosystems. The module will provide students with an in-depth understanding of a particular thematic focus of alpine environments.
This module explores climate change in the context of it being a ‘wicked problem’. The aim is to provoke students to look beyond the simple narratives pushed at us about climate change and to start to think critically as wicked problems require us to do. In doing so, students are invariably forced to abandon often naive assumptions about what can and can't be done to tackle climate related risks.
This module employs developing and using an Integrated Assessment Model (IAM) as its primary learning device because, for all their deficiencies, IAMs have become the most important way synthesising the various components of the climate change 'problem'. Practical decision making is a theme running through the module supported by quantitative analysis. However, this necessarily involves debate and discussion over the normative values we use in our analysis of climate change and students will be expected to actively participate in this debate, holding and developing their line of argument both in small groups and in class wide discussions.
By the end of this module, students will recognise the role of societal and climate dynamics in climate change management, and will gain the necessary knowledge required to comprehend the basis of sustainable development in the context of climate change management. They will also be able to perform simple, yet meaningful evaluation of a range of climate related options.
Students will learn both the principles on which remote sensing systems operate, and how useful environmental information can be derived from remotely sensed data. From this, students will be able to compare the information provided by remote sensing sensors from several areas of research such as ecology, biology, geography, geology, marine and atmosphere science.
They will also develop image processing skills and learn how remote sensing data can be used to extend our understanding of ecosystems and global environmental changes.
The aims of this module are fulfilled by initially examining the physical basis of remote sensing in terms of the characteristics of electromagnetic radiation and its interactions with the Earth's atmosphere and biosphere. This physical basis is also examined in terms of how the sensors and satellites operate in a modern earth system observatory. The techniques used to analyse and interpret images will then be used to understand local, regional and global environmental changes.
This is followed by an investigation of the environmental applications of remote sensing. Here, satellite images from NASA, ESA and several international space agencies are used to illustrate the increasing importance of remotely-sensed data for environmental and climate applications.
Laboratory practicals allow students to study the physical principles of remote sensing, and computer practicals are used to demonstrate image analysis techniques using ENVI Imagine: a state-of-the-art software package.
This module takes a broad look at geological hazards, covering contemporary events, to those that have shaped the Earth over geological time. Specific hazards are addressed, including earthquakes and tsunamis, terrestrial and sub-marine landslides at a variety of differing scales, landslide triggering and principles of run-out, volcanic hazards (eruption styles, plumes and pyroclastic flows) and extreme events which civilisation has yet to witness.
The module explores in depth the fundamental processes involved, and to what extent events can be predicted. Case histories of national and international disasters will be used to illustrate these hazards, with the inherent risks and potential mitigation measures discussed. The module develops a sense of human-place in the geological world, promoting an understanding of how the geological world impacts human society, and what can be done to limit that impact.
Students will be able to describe and explain the processes responsible for the occurrence, recurrence and magnitude of geological hazards, and will gain the knowledge needed to evaluate hazard prediction methods. Additionally, students will gain a critical understanding of risk mitigation strategies, with reference to examples from around the world, and will gain the practical knowledge required to apply simple principles of analysis of slope failure using a variety of natural hazard situations. Students will also be able to demonstrate how simple probabilistic models may be applied to forecasting earthquakes, and discuss the uncertainties inherent in these techniques.
This module will give you an insight into the physical dynamics and ecological interactions within glacial systems. We begin with the concept of mass and surface energy balance, determining when and where snow and ice melt may occur. This determines how water flows through a glacier and introduces the concept of hydrological regime. We then study the implications that this has for glacial dynamics and the legacy of past glacial systems in the environment. Where ice sheets and glaciers overlie active volcanic systems there is currently very little understanding of how the two forces interact - does volcanic activity control glacier behaviour or is it the other way round? We introduce the concept of studying glaciers as ecosystems, rather than just physical systems in the landscape, and discuss recent advances in glacier hydrochemistry in the context of climatic change.
The aim of this module is to introduce the concept of the Earth system and how the different components interact with each other to shape the Earth's climate and control how the climate might change. The module begins with underlying concepts that shape the Earth's, before considering natural and human drivers of climate change, including volcanoes, solar output, greenhouse gases and land use change. In addition, it will also introduce the computer models and global observation networks that scientists use to understand the Earth system as well as the IPCC process.
This module provides students with an introduction to the physical processes which influence global climate change, leading to a better understanding of Earth system science and give them a clear understanding of the Earth system and the human impacts on it, and how scientists investigate this area with Earth system model.
Students will gain the level of experience and knowledge necessary to demonstrate subject specific skills, such as how to calculate a global 2-compartment radiative budget, along with an understanding of the major parts of the Earth system and how they interact. Students will develop the communication skills required to describe what an Earth system model is, and will be able to explain pollutant sources and sinks.
Groundwater is the largest freshwater reservoir on the planet. It feeds rivers and oceans, and in many parts of the world, including regions of the UK, it is the main, or only, source of freshwater. This module discusses aquifers and studies the role of the unsaturated zone in hydrogeology. Students will be introduced to the Darcian flow mathematical models of groundwater flow, and will gain an awareness of the tools and techniques available for groundwater investigation.
Students will develop an appreciation for the critical role that soil water plays in sustaining vegetation. For example, it can influence the structural properties of the ground. The module also introduces concepts of groundwater transport, and highlights the linkage between rivers and aquifers. It will address the modelling tools required for groundwater applications, and practical examples such as a field visit are used to support the material covered in lectures.
This course is based at the Slapton Ley Field Studies Centre, South Devon in the summer and centres on a study of the hydrological processes governing nitrate eutrophication of Slapton Ley, a coastal freshwater lake of ecological significance. The course offers a unique opportunity to examine an actual environmental problem - eutrophication - through the integration of field measurements and laboratory analysis. Field measurements, in small groups, will combine qualitative observations with borehole hydraulic testing and some geophysics. Laboratory analysis will include contaminant breakthrough experiments, soil physical properties, nitrate chemistry and topography-based simulation modelling. Your understanding of the nitrate remediation measures will be reinforced through a field visit on 'Catchment Sensitive Farming' led by Natural England staff.
In this module, students will learn the mechanisms by which radiation damages the body and the systems by which we measure and control exposure to radiation. The sources of naturally occurring radioactivity and radioactive contaminants and their behaviour in the environment will be studied in order to better understand how people can become exposed. Students will become better equipped to understand and evaluate the risk to human populations of nuclear accidents.
Through the study of specific radiation-related case studies, students will develop an understanding of risk in a wider context, being able to contribute more thoughtfully to nuclear-related debates in society. They will practice and develop their numerical skills through the determination of radioactive decay, learning to manipulate and solve basic radioactive decay law equation in the process.
Laboratory classes will be used to demonstrate concepts addressed in lectures, and students will be encouraged to put the data generated into the wider context. For example, students will practise dose assessments, and linking those back to the processes that control the fate and distribution of radionuclides in the environment, hence developing skills in synthesis and evaluation.
This module expects students to apply a range of skills already developed in previous modules Geology, Natural Hazards, Geoscience in Practice and Geological Hazards. It allows students to improve their theoretical and practical knowledge of volcanic processes by studying the evolution of a basaltic volcano. Students will explore a wide range of the complex physical volcanic processes that take place both on the surface and beneath volcanoes, including lava flow emplacement, intrusive and explosive events. This problem-based learning module covers two levels of problems: the higher-level problem (e.g. understanding the plumbing system of a complex volcano or the role of ‘volcano spreading’ or slope instability in the evolution of volcanoes) will occupy the entire module. Lower level problems will be solved at a number of key localities where students will be expected to unravel the processes involved.
On completion of this module, students will express the ability to systematically observe and interpret field evidence for emplacement processes of volcanic rocks, along with gaining the knowledge required to describe the intrusive, effusive and explosive processes that take place during volcanic eruptions. Students will also demonstrate the ability to recognise the role of regional tectonics, gravitational deformation of the volcano and major slope instabilities on the evolution of basaltic volcanoes. The module will also prepare students with the level of practical knowledge necessary to explain the problems of dealing with volcanic hazards on heavily populated active volcanoes.
Water is fundamental to life and is therefore a critical natural resource for human society and for all ecosystems. Employers of graduates from a wide range of environment-orientated degrees increasingly value understanding of the frameworks and technologies through which water resources can be conserved and restored, alongside the interactions between water and other natural resources such as land. This module focuses on providing this understanding, drawing on a wide range of real-world examples from the UK water sector. Students will cover the major UK and European regulatory frameworks that currently drive water resource management, the technologies available to treat wastewater, the approaches used to assess chemical and biological water quality, and the links between agricultural and urban development and water quality. This learning will be reinforced by field visits to wastewater treatment works, and by practical work dealing with datasets collected by the Environment Agency of England and Wales.
Over the duration of the module, students will be required to apply standard Environment Agency statistical procedures to assess chemical water quality, along with applying standard Environment Agency procedures to evaluate biological water quality. The module will enhance students’ ability to identify the strategies for assessing and managing water quality in the UK, and they will be able to derive simple dilution models to describe pollutant concentrations in river networks. Finally, students will gain the knowledge required to be able to explain and describe the fundamentals of water treatment processes.
Students undertaking this module will learn about the human and physical aspects of the Mediterranean environment. The module will focus on the distribution, allocation and use of water, whilst exploring the ways in which land use or land management affect the water environment.
Students will learn about the physical constraints on water availability whilst analysing the role of government institutions and private companies in developing and managing water for a range of purposes.
By participating in a four-day field course, students will have the opportunity to experience the distinctive environmental, cultural and socioeconomic nature of the Istrian peninsula. Generally, the module is designed to develop students' independent and group-based skills and enhance their knowledge related to water, particularly in the Mediterranean environment.
Fees and funding
Our annual tuition fee is set for a 12-month session, starting in the October of your year of study.
Students will be required to pay for travel to field sites and will have to purchase wet weather clothing, boots and waterproof notebooks for fieldtrips for which the estimated cost is approximately £110. The course offers optional field trips and students will have to pay for any travel and accommodation costs. If students undertake placements then they may incur additional travel costs. Students on certain modules may wish to purchase a hand lens and compass clinometer but these may be borrowed from the Department.
There may be extra costs related to your course for items such as books, stationery, printing, photocopying, binding and general subsistence on trips and visits. Following graduation, you may need to pay a subscription to a professional body for some chosen careers.
Specific additional costs for studying at Lancaster are listed below.
College fees
Lancaster is proud to be one of only a handful of UK universities to have a collegiate system. Every student belongs to a college, and all students pay a small college membership fee which supports the running of college events and activities. Students on some distance-learning courses are not liable to pay a college fee.
For students starting in 2025, the fee is £40 for undergraduates and research students and £15 for students on one-year courses.
Computer equipment and internet access
To support your studies, you will also require access to a computer, along with reliable internet access. You will be able to access a range of software and services from a Windows, Mac, Chromebook or Linux device. For certain degree programmes, you may need a specific device, or we may provide you with a laptop and appropriate software - details of which will be available on relevant programme pages. A dedicated IT support helpdesk is available in the event of any problems.
The University provides limited financial support to assist students who do not have the required IT equipment or broadband support in place.
Study abroad courses
In addition to travel and accommodation costs, while you are studying abroad, you will need to have a passport and, depending on the country, there may be other costs such as travel documents (e.g. VISA or work permit) and any tests and vaccines that are required at the time of travel. Some countries may require proof of funds.
Placement and industry year courses
In addition to possible commuting costs during your placement, you may need to buy clothing that is suitable for your workplace and you may have accommodation costs. Depending on the employer and your job, you may have other costs such as copies of personal documents required by your employer for example.
The fee that you pay will depend on whether you are considered to be a home or international student. Read more about how we assign your fee status.
Home fees are subject to annual review, and may be liable to rise each year in line with UK government policy. International fees (including EU) are reviewed annually and are not fixed for the duration of your studies. Read more about fees in subsequent years.
We will charge tuition fees to Home undergraduate students on full-year study abroad/work placements in line with the maximum amounts permitted by the Department for Education. The current maximum levels are:
Students studying abroad for a year: 15% of the standard tuition fee
Students taking a work placement for a year: 20% of the standard tuition fee
International students on full-year study abroad/work placements will be charged the same percentages as the standard International fee.
Please note that the maximum levels chargeable in future years may be subject to changes in Government policy.
Scholarships and bursaries
You will be automatically considered for our main scholarships and bursaries when you apply, so there's nothing extra that you need to do.
You may be eligible for the following funding opportunities, depending on your fee status:
Unfortunately no scholarships and bursaries match your selection, but there are more listed on scholarships and bursaries page.
Scheme
Based on
Amount
Based on {{item.eligibility_basis}}
Amount {{item.amount}}
We also have other, more specialised scholarships and bursaries - such as those for students from specific countries.
Lancaster has a wide range of qualities beyond having amazing degree subjects; the sense of community and belonging is really strong. I have connections with people in my halls, my course, my college and societies - I feel as though I'm part of something special, which is definitely unique to Lancaster. When walking around the campus to my next lecture, everyone is so friendly, there's just a really positive vibe and a good sense of community.
Putting our learning into practice in the field gives me a well-rounded understanding, and fieldwork is great for this! I've been to Carrock Fell in the Lake District, where I explored a disused tungsten mine and observed its impacts on stream water quality. I have plenty of fond memories of that field trip, developing my skills and having a great time with my mates. Modules like this really enhance my learning, so instead of being given data to analyse and work on, I am able to gather my own data out in the field, analyse the results and report on my own research.
There are lots of modules which feedback to industry, one of which is on Geographic Information Systems (GIS), allowing me to map out a range of things such as planning applications, chemical data, and much more. Having skills like these set me apart, as I am equipped with specialist understanding.
Rachael Cooper, BSc Environmental Science
Our Facilities
Teaching Labs
Our new £4.4 million teaching laboratories feature cutting-edge laboratory and teaching equipment, giving you the best environment to begin your degree.
Research Glasshouses
Our 15 purpose-built glasshouse modules provide flexible growth facilities dedicated to our full range of plant science and ecological research.
Hazelrigg Weather Station
Our Hazelrigg Weather Station has been making daily weather observations at Lancaster University since 1966, allowing you to explore a continuous and high-quality record of weather patterns as a part of your degree!
Environmental Chemistry Laboratories
Our chemistry laboratories have amongst the best analytical facilities in the world for environmental organic chemistry research.
International Field Sites
We work across the tropical forests of South America and Malaysia where researchers and students have been operating since 2003.
Learning on Location
As a part of our Environmental and Earth and Environmental Sciences degrees, you will have the opportunity to conduct fieldwork in a variety of locations, both in the UK and abroad. Some of the destinations open to our students are:
The information on this site relates primarily to 2025/2026 entry to the University and every effort has been taken to ensure the information is correct at the time of publication.
The University will use all reasonable effort to deliver the courses as described, but the University reserves the right to make changes to advertised courses. In exceptional circumstances that are beyond the University’s reasonable control (Force Majeure Events), we may need to amend the programmes and provision advertised. In this event, the University will take reasonable steps to minimise the disruption to your studies. If a course is withdrawn or if there are any fundamental changes to your course, we will give you reasonable notice and you will be entitled to request that you are considered for an alternative course or withdraw your application. You are advised to revisit our website for up-to-date course information before you submit your application.
More information on limits to the University’s liability can be found in our legal information.
Our Students’ Charter
We believe in the importance of a strong and productive partnership between our students and staff. In order to ensure your time at Lancaster is a positive experience we have worked with the Students’ Union to articulate this relationship and the standards to which the University and its students aspire. View our Charter and other policies.
Our historic city is student-friendly and home to a diverse and welcoming community. Beyond the city you'll find a stunning coastline and the picturesque Lake District.