Tuning Properties and Functionality in the Modulated Self-Assembly of Metal-Organic Frameworks
Wednesday 4 December 2024, 2:00pm to 3:00pm
Venue
BLN - Marcus Merriman LT - View MapOpen to
All Lancaster University (non-partner) students, Postgraduates, StaffRegistration
Registration not required - just turn upEvent Details
Professor Ross Dorgan of Glasgow University joins Lancaster's Chemistry Department for a research seminar on the tuning properties and functionality in the modulated self-assembly of metal-organic frameworks. Also available on Teams.
Speaker: Professor Ross Dorgan, Glasgow University
Metal-organic frameworks (MOFs) are network materials comprised of organic ligands connected by metal ion clusters into multidimensional structures that often have permanent porosity. Their chemically addressable structures, combined with their ability to store large quantities of small molecules within their pores, have led to applications in gas storage, heterogeneous catalysis, sensing, and drug delivery, amongst others. Coordination modulation, the addition of monomeric modulators to synthetic mixtures, can tune particle size from nanometres to centimetres, through capping of crystallites (decreasing size) or coordinative competition with ligands (increasing size).
The talk will cover the development of our own modulation techniques1 for a range of MOFs, describing the versatility of modulation in controlling physical properties such as interpenetration, defectivity, and porosity.2 Our techniques provide access to high quality single crystals of many different MOFs, allowing the subsequent characterisation of their mechanical properties,3 single-crystal to single-crystal postsynthetic modification,4 and development of fluorescent sensors.5 Additionally, we will show that protocols can be tuned to downsize materials, producing nanoparticles with fine control of surface chemistry, allowing the assembly of pH-responsive and organelle targeted drug delivery devices.6
1Forgan, R. S. Chem. Sci. 2020, 11, 4546–4562.
2Bara, D.; Wilson, C.; Mörtel, M.; Khusniyarov, M. M.; Ling, S.; Slater, B.; Sproules, S.; Forgan, R. S. J. Am. Chem. Soc. 2019, 141, 8346–8357; Bara, D.; Meekel, E. G.; Pakamorė, I.; Wilson, C.; Ling, S.; Forgan, R. S. Mater. Horiz. 2021, 8, 3377–3386; Thom, A. J. R.; Madden, D. G.; Bueno-Perez, R.; Al Shakhs, A. N.; Lennon, C. T.; Marshall, R. J.; Walshe, C. T.; Wilson, C.; Murray, C. A.; Thompson, S. P.; Turner, G. F.; Bara, D.; Moggach, S. A.; Fairen-Jimenez, D.; Forgan, R. S. Mater. Today Chem. 2022, 24, 100887.
3Hobday, C. L.; Marshall, R. J.; Murphie, C. F.; Sotelo, J.; Richards, T.; Allan, D.; Düren, T.; Coudert, F. –X.; Forgan, R. S.; Morrison, C. A.; Moggach, S. A.; Bennett, T. D. Angew. Chem. Int. Ed. 2016, 55, 2401–2405.
4Marshall, R. J.; Griffin, S. L.; Wilson, C; Forgan, R. S. J. Am. Chem. Soc. 2015, 137, 9527–9530; Thom, A. J. R.; Turner, G. F.; Davis, Z. H.; Ward, M. R.; Pakamorė, I.; Hobday, C. L.; Allan, D. R.; Warren, M. R.; Leung, W. L. W.; Oswald, I. D. H.; Morris, R. E.; Moggach, S. A.; Ashbrook, S. E.; Forgan R. S. Chem. Sci. 2023, 14, 7716–7724.
5Marshall, R. J.; Kalinovskyy, Y.; Griffin, S. L.; Wilson, C.; Blight, B. A.; Forgan, R. S. J. Am. Chem. Soc. 2017, 139, 6253–6260; Sussardi, A.; Hobday, C.; Marshall, R. J.; Forgan, R. S.; Jones, A. C.; Moggach, S. A. Angew. Chem. Int. Ed. 2020, 59, 8118–8122
6Abánades Lázaro, I.; Haddad, S.; Sacca, S.; Orellana-Tavra, C.; Fairen-Jimenez, D.; Forgan, R. S. Chem 2017, 2, 561–578; Haddad, S.; Abánades Lázaro, I.; Fantham, M.; Mishra, A.; Silvestre-Albero, J.; Osterrieth, J. W. M.; Kaminski Schierle, G. S.; Kaminski, C. F.; Forgan, R. S.; Fairen-Jimenez, D. J. Am. Chem. Soc. 2020, 142, 6661–6674.
Contact Details
Name | Philip Simpson |