Home page for accesible maths E Solutions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

E.10 Tutor-assessed exercises from week 3

Exercise 3.15.

  1. (i)

    By experimentation, we see that (-7)9+232=1(-7)9+2\cdot 32=1, so that 99 and 3232 are coprime. (Alternatively, use the Euclidean algorithm.) Hence solutions exist by Theorem 5.2.2, and the complete solution is given by

    x(-7)17=-119=(-4)32+99mod32.x\equiv(-7)17=-119=(-4)32+9\equiv 9\bmod 32.

    [As a check, we verify that x=9x=9 satisfies the congruence:

    99=81=232+1717mod32.]9\cdot 9=81=2\cdot 32+17\equiv 17\bmod 32.]
  2. (ii)

    We use the Euclidean algorithm to determine hcf(70,119)\mathrm{hcf}(70,119):

    119=170+497=49-22170=149+21=49-2(70-49)49=221+7=349-27021=37+0=3(119-70)-270so hcf(70,119)=7;=3119-570.\begin{array}[]{rlrl}119&\!\!\!=1\cdot 70+49&7=&49-2\cdot 21\\ 70&\!\!\!=1\cdot 49+21&=&49-2(70-49)\\ 49&\!\!\!=2\cdot 21+7&=&3\cdot 49-2\cdot 70\\ 21&\!\!\!=3\cdot 7+0&=&3(119-70)-2\cdot 70\\ \hbox{so }\mathrm{hcf}(70,119)&\!\!\!=7;&=&3\cdot 119-5\cdot 70.\end{array}

    Since 7|427|42, solutions exist by Theorem 5.2.2. Lemma 5.2.8 enables us to simplify the congruence by dividing by 77:

    (70x42mod119)(707x427mod1197)(10x6mod17).(70x\equiv 42\bmod 119)\ \Leftrightarrow\ \biggl(\frac{70}{7}x\equiv\frac{42}{% 7}\bmod\frac{119}{7}\biggr)\ \Leftrightarrow\ (10x\equiv 6\bmod 17).

    Moreover, dividing by 77 in the identity 7=3119-5707=3\cdot 119-5\cdot 70 found above, we obtain 1=317-5101=3\cdot 17-5\cdot 10, and the complete solution is given by

    x(-5)6=-30=(-2)17+44mod17.x\equiv(-5)\cdot 6=-30=(-2)\cdot 17+4\equiv 4\bmod 17.

    [As a check, we verify that x=4x=4 satisfies the original congruence:

    704=280=2119+4242mod119.]70\cdot 4=280=2\cdot 119+42\equiv 42\bmod 119.]

Exercise 3.16. Let xx denote the number of first-year maths students. Then xx is a simultaneous solution to the two congruences x7mod15x\equiv 7\bmod 15 and x13mod28x\equiv 13\bmod 28, and also 0<x<5000<x<500. We apply the Euclidean algorithm to find the highest common factor of 1515 and 2828 and express it as an integral linear combination of them:

28\displaystyle 28 =15+13\displaystyle=15+13 1\displaystyle 1 =13-62\displaystyle=13-6\cdot 2
15\displaystyle 15 =13+2\displaystyle=13+2 =13-6(15-13)=713-615\displaystyle=13-6(15-13)=7\cdot 13-6\cdot 15
13\displaystyle 13 =62+1\displaystyle=6\cdot 2+1 =7(28-15)-615=728-1315.\displaystyle=7(28-15)-6\cdot 15=7\cdot 28-13\cdot 15.

Thus 1515 and 2828 are coprime, so that the Chinese Remainder Theorem applies. We have a=7a=7, b=13b=13, m=15m=15, n=28n=28, r=-13r=-13 and s=7s=7, and the complete solution to the pair of congruences is given by

xasn+brm=7728+13(-13)15=-1163mod1528.x\equiv asn+brm=7\cdot 7\cdot 28+13(-13)15=-1163\bmod 15\cdot 28.

Since 1528=42015\cdot 28=420 and -1163=(-3)420+97-1163=(-3)420+97, we can rewrite this as x97mod420x\equiv 97\bmod 420. Now 97-420<097-420<0 and 97+420>50097+420>500, so we conclude that there are x=97x=97 students.

Bonus exercise 3.22.

  1. (i)

    Write a=p1a1p2a2prara=p_{1}^{a_{1}}p_{2}^{a_{2}}\cdots p_{r}^{a_{r}} and b=p1b1p2b2prbrb=p_{1}^{b_{1}}p_{2}^{b_{2}}\cdots p_{r}^{b_{r}}, where p1<p2<<prp_{1}<p_{2}<\cdots<p_{r} are prime numbers and a1,,ar,b1,,br0a_{1},\ldots,a_{r},b_{1},\ldots,b_{r}\in{\mathbb{N}}_{0}. Then we have a2=p12a1p22a2pr2ara^{2}=p_{1}^{2a_{1}}p_{2}^{2a_{2}}\cdots p_{r}^{2a_{r}} and b2=p12b1p22b2pr2brb^{2}=p_{1}^{2b_{1}}p_{2}^{2b_{2}}\cdots p_{r}^{2b_{r}}. Since b2|a2b^{2}|a^{2}, we must have 2bj2aj2b_{j}\leqslant 2a_{j} for each j{1,,r}j\in\{1,\ldots,r\}; thus bjajb_{j}\leqslant a_{j} for each j{1,,r}j\in\{1,\ldots,r\}, and so b|ab|a as required.

  2. (ii)

    Let nn\in\mathbb{N}. We seek to prove that either n\sqrt{n}\in\mathbb{N} or n\sqrt{n}\notin\mathbb{Q}. Now if n\sqrt{n}\notin\mathbb{Q}, this is clearly satisfied, so suppose that n\sqrt{n}\in\mathbb{Q}, say n=a/b\sqrt{n}=a/b, where a,ba,b\in{\mathbb{N}}. Squaring this identity, we obtain n=a2/b2n=a^{2}/b^{2}, so that a2=nb2a^{2}=nb^{2} and therefore b2|a2b^{2}|a^{2}. By (i), this implies that b|ab|a, and therefore n=a/b\sqrt{n}=a/b\in\mathbb{N}.

Bonus exercise 3.23. We begin by reducing each of the congruences to the form xamodmx\equiv a\bmod m (if possible), using the techniques from Section 5.2.

  • 140x70mod294140x\equiv 70\bmod 294: We find the prime factorizations 140=2257140=2^{2}\cdot 5\cdot 7 and 294=2372294=2\cdot 3\cdot 7^{2}, so that hcf(140,294)=27=14\mathrm{hcf}(140,294)=2\cdot 7=14 which divides 7070. Hence solutions exist, and we can simplify the congruence by dividing it by 1414, giving 10x5mod2110x\equiv 5\bmod 21. Now hcf(10,21)=1=(-2)10+21\mathrm{hcf}(10,21)=1=(-2)10+21, so that the complete solution is given by

    x5(-2)=-1011mod21.x\equiv 5(-2)=-10\equiv 11\bmod 21.
  • 65x35mod16065x\equiv 35\bmod 160: We find the prime factorizations 65=51365=5\cdot 13 and 160=255160=2^{5}\cdot 5, so that hcf(65,160)=5\mathrm{hcf}(65,160)=5 which divides 3535. Hence solutions exist, and we can simplify the congruence by dividing it by 55, giving 13x7mod3213x\equiv 7\bmod 32. Now hcf(13,32)=1=513-232\mathrm{hcf}(13,32)=1=5\cdot 13-2\cdot 32, so that the complete solution is given by

    x75=353mod32.x\equiv 7\cdot 5=35\equiv 3\bmod 32.

We have thus shown that xx satisfies 140x70mod294140x\equiv 70\bmod 294 and 65x35mod16065x\equiv 35\bmod 160 if and only if

x11mod21  and  x3mod32.x\equiv 11\bmod 21\qquad\text{and}\qquad x\equiv 3\bmod 32.

Since hcf(21,32)=1=(-3)21+232\mathrm{hcf}(21,32)=1=(-3)21+2\cdot 32, the Chinese Remainder Theorem applies, giving the complete solution

x11232+3(-3)21=515mod672.x\equiv 11\cdot 2\cdot 32+3(-3)21=515\bmod 672.