Home page for accesible maths 3 Chapter 3 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

3.18 Proof of the Chain Rule 1

Rough proof (not examinable). Let x=x(t)x=x(t) and y=y(t)y=y(t). Suppose we make a small change ss in the value of tt. Let h=x(t+s)-x(t)h=x(t+s)-x(t) and k=y(t+s)-y(t)k=y(t+s)-y(t). Then hsdxdt\frac{h}{s}\rightarrow\frac{dx}{dt} and ksdydt\frac{k}{s}\rightarrow\frac{dy}{dt} as s0s\rightarrow 0. Thus

hsfx+ksfydxdtfx+dydtfyas s0s\rightarrow 0.\frac{h}{s}\frac{\partial f}{\partial x}+\frac{k}{s}\frac{\partial f}{\partial y% }\rightarrow\frac{dx}{dt}\frac{\partial f}{\partial x}+\frac{dy}{dt}\frac{% \partial f}{\partial y}\;\;\mbox{as $s\rightarrow 0$.}

Now f(x(t+s),y(t+s))-f(x(t+s),y)s=\frac{f(x(t+s),y(t+s))-f(x(t+s),y)}{s}=

f(x+h,y+k)-f(x+h,y)kksfydydt\frac{f(x+h,y+k)-f(x+h,y)}{k}\cdot\frac{k}{s}\rightarrow\frac{\partial f}{% \partial y}\cdot\frac{dy}{dt}

as s0s\rightarrow 0. Similarly, f(x(t+s),y)-f(x,y)s=\frac{f(x(t+s),y)-f(x,y)}{s}=

f(x+h,y)-f(x,y)hhsfxdxdtas s0s\rightarrow 0.\frac{f(x+h,y)-f(x,y)}{h}\cdot\frac{h}{s}\rightarrow\frac{\partial f}{\partial x% }\cdot\frac{dx}{dt}\;\;\mbox{as $s\rightarrow 0$}.

Summing the two expressions, we obtain the required value for the derivative.