Rough proof (not examinable). Let x=x(t)x=x(t) and y=y(t)y=y(t). Suppose we make a small change ss in the value of tt. Let h=x(t+s)-x(t)h=x(t+s)-x(t) and k=y(t+s)-y(t)k=y(t+s)-y(t). Then hs→dxdt\frac{h}{s}\rightarrow\frac{dx}{dt} and ks→dydt\frac{k}{s}\rightarrow\frac{dy}{dt} as s→0s\rightarrow 0. Thus
Now f(x(t+s),y(t+s))-f(x(t+s),y)s=\frac{f(x(t+s),y(t+s))-f(x(t+s),y)}{s}=
as s→0s\rightarrow 0. Similarly, f(x(t+s),y)-f(x,y)s=\frac{f(x(t+s),y)-f(x,y)}{s}=
Summing the two expressions, we obtain the required value for the derivative.