Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.60 Laplace transforms

Example.

Let f(x)=eax.f(x)=e^{ax}. Then the Laplace transform is defined for s>as>a with

F(s)=1s-a.F(s)={{1}\over{s-a}}.

Solution. If asa\neq s then we have

0Reaxe-sxdx=[e(a-s)x(a-s)]0R=e(a-s)R-1a-s.\int_{0}^{R}e^{ax}e^{-sx}dx={\left[{{e^{(a-s)x}}\over{(a-s)}}\right]_{0}^{R}}% \,{=\frac{e^{(a-s)R}-1}{a-s}.}

If a<sa<s then e(a-s)R0e^{(a-s)R}\rightarrow{0} as RR\rightarrow\infty, which establishes the value of F(s)F(s) for s>as>a. If a>sa>s then e(a-s)Re^{(a-s)R}\rightarrow{\infty} as RR\rightarrow\infty, so the integral doesn’t converge. Finally, if a=sa=s then 0Re(a-s)xdx=0R1dx=R\int_{0}^{R}e^{(a-s)x}\;dx={\int_{0}^{R}1\,dx}\,{=R} doesn’t converge either.