Let f(x)=eax.f(x)=e^{ax}. Then the Laplace transform is defined for s>as>a with
Solution. If a≠sa\neq s then we have
If a<sa<s then e(a-s)R→0e^{(a-s)R}\rightarrow{0} as R→∞R\rightarrow\infty, which establishes the value of F(s)F(s) for s>as>a. If a>sa>s then e(a-s)R→∞e^{(a-s)R}\rightarrow{\infty} as R→∞R\rightarrow\infty, so the integral doesn’t converge. Finally, if a=sa=s then ∫0Re(a-s)xdx=∫0R1dx=R\int_{0}^{R}e^{(a-s)x}\;dx={\int_{0}^{R}1\,dx}\,{=R} doesn’t converge either.