Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.58 Comparison Test.

Example.

The following integral converges:

I=1sinxx2dx.I=\int_{1}^{\infty}{{\sin x}\over{x^{2}}}dx.

Solution. Here |sinx|1|\sin x|\leq 1, and hence |sinx|x21x2.{{|\sin x|}\over{x^{2}}}\leq{{{1}\over{x^{2}}}.} Also, 1dxx2\int_{1}^{\infty}\frac{dx}{x^{2}} converges since

1Rdxx2=[-1x]1R=1-1R1  as RR\rightarrow\infty.\int_{1}^{R}{{dx}\over{x^{2}}}={\left[{{-1}\over{x}}\right]_{1}^{R}}\,{=1-{{1}% \over{R}}}\,{\rightarrow 1}\qquad\mbox{as $R\rightarrow\infty$}.

Hence II converges and has absolute value at most 11 by the comparison test. However, we don’t have a simple formula for the value of the integral.