Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.53 Integrals of unbounded functions

For example, the integral 01logxdx\int_{0}^{1}\log x\,dx is improper since logx\log x diverges at x=0x=0. But

δ1logxdx=[xlogx-x]δ1=-1-δlogδ+δ.\int_{\delta}^{1}\log x\,dx={\left[x\log x-x\right]_{\delta}^{1}=}\,{-1-\delta% \log\delta+\delta.}

Since δlogδ0\delta\log\delta\rightarrow 0 as δ0+\delta\rightarrow 0+ (see frame 4.23 in MATH101), the integral converges to -1-1 as δ0+\delta\rightarrow 0+.

Likewise, if ff is discontinuous at bb, then we can integrate over (a,b-δ)(a,b-\delta) and define

abf(x)dx=limδ0+ab-δf(x)dx\int_{a}^{b}f(x)\,dx=\lim_{\delta\rightarrow 0+}\int_{a}^{b-\delta}f(x)\,dx

where this limit exists; otherwise, we say that abf(x)dx\int_{a}^{b}f(x)\,dx diverges.