Express (3x2-x+6)/(x3+x2+3x-5)(3x^{2}-x+6)/(x^{3}+x^{2}+3x-5) as partial fractions.
Solution. We already factorized g(x)g(x) as (x-1)(x2+2x+5)(x-1)(x^{2}+2x+5).
Now we express 3x2-x+6g(x)=3x2-x+6(x-1)(x2+2x+5)=Ax-1+Bx+Cx2+2x+5{\frac{3x^{2}-x+6}{g(x)}}={\frac{3x^{2}-x+6}{(x-1)(x^{2}+2x+5)}}={\frac{A}{x-1% }}+{\frac{Bx+C}{x^{2}+2x+5}} where A,B,CA,B,C are to be determined. To do this we multiply through by g(x)g(x), obtaining:
Now the equality of the two sides implies: A+B=3A+B=3, 2A+C-B=-12A+C-B=-1, 5A-C=65A-C=6. Adding all three equations together we get A=1,A={1,} then B=2,B={2,} C=-1.C={-1.}