Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.14 More on Example 1.3

Example.

Express (3x2-x+6)/(x3+x2+3x-5)(3x^{2}-x+6)/(x^{3}+x^{2}+3x-5) as partial fractions.

Solution. We already factorized g(x)g(x) as (x-1)(x2+2x+5)(x-1)(x^{2}+2x+5).

Now we express 3x2-x+6g(x)=3x2-x+6(x-1)(x2+2x+5)=Ax-1+Bx+Cx2+2x+5{\frac{3x^{2}-x+6}{g(x)}}={\frac{3x^{2}-x+6}{(x-1)(x^{2}+2x+5)}}={\frac{A}{x-1% }}+{\frac{Bx+C}{x^{2}+2x+5}} where A,B,CA,B,C are to be determined. To do this we multiply through by g(x)g(x), obtaining:

3x2-x+6=A(x2+2x+5)+(Bx+C)(x-1)3x^{2}-x+6={A(x^{2}+2x+5)+(Bx+C)(x-1)}
=(A+B)x2+(2A+C-B)x+(5A-C).{=(A+B)x^{2}+(2A+C-B)x+(5A-C).}

Now the equality of the two sides implies: A+B=3A+B=3, 2A+C-B=-12A+C-B=-1, 5A-C=65A-C=6. Adding all three equations together we get A=1,A={1,} then B=2,B={2,} C=-1.C={-1.}