Home page for accesible maths 1 1 Further Integration

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.12 Completing the proof

Now g1(x)g_{1}(x) has (s-1)(s-1) distinct linear factors and tt distinct quadratic factors, so by induction we can express f(x)k(x)g1(x){\frac{f(x)k(x)}{g_{1}(x)}} via partial fractions as in the statement of the Theorem. On the other hand, we have

f(x)h(x)=A0+A1(x-as)++Ad(x-as)df(x)h(x)=A_{0}+A_{1}(x-a_{s})+\ldots+A_{d}(x-a_{s})^{d}

for some dd and some real numbers A0,,AdA_{0},\ldots,A_{d}, and so

f(x)h(x)(x-as)ms=A0(x-as)ms+A1(x-as)ms-1++As-1(x-as)+p(x){\frac{f(x)h(x)}{(x-a_{s})^{m_{s}}}}=\frac{A_{0}}{(x-a_{s})^{m_{s}}}+\frac{A_{% 1}}{(x-a_{s})^{m_{s}-1}}+\ldots+\frac{A_{s-1}}{(x-a_{s})}+p(x)

for some polynomial p(x)p(x). Combining this with the expression for f(x)k(x)g1(x){\frac{f(x)k(x)}{g_{1}(x)}} gives us the required expression for f(x)g(x){\frac{f(x)}{g(x)}}. (If g(x)g(x) has no linear factors then we perform the same trick with g2(x)g_{2}(x) and Qt(x)ntQ_{t}(x)^{n_{t}}, expressing f(x)h(x)f(x)h(x) in the form (B0+C0x)++(Bd+Cdx)Qt(x)d(B_{0}+C_{0}x)+\ldots+(B_{d}+C_{d}x)Q_{t}(x)^{d}.) ∎