Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.48 Proof (iii) Complex conjugate roots

(iii) The roots are α±iβ\alpha\pm i\beta, so auxiliary equation is

(s-α-iβ)(s-α+iβ)=0,(s-\alpha-i\beta)(s-\alpha+i\beta)=0,
s2-2αs+α2+β2=0.s^{2}-2\alpha s+\alpha^{2}+\beta^{2}=0.

Consider

w(x)=e-αxy(x)w(x)=e^{-\alpha x}y(x)
w(x)=e-αxy(x)-αe-αxy(x)w^{\prime}(x)=e^{-\alpha x}y^{\prime}(x)-\alpha e^{-\alpha x}y(x)
w′′(x)=e-αxy′′(x)-2αe-αxy(x)+α2e-αxy(x)w^{\prime\prime}(x)=e^{-\alpha x}y^{\prime\prime}(x)-2\alpha e^{-\alpha x}y^{% \prime}(x)+\alpha^{2}e^{-\alpha x}y(x)

where

y′′(x)-2αy(x)+(α2+β2)y(x)=0,y^{\prime\prime}(x)-2\alpha y^{\prime}(x)+(\alpha^{2}+\beta^{2})y(x)=0,

so

w′′(x)+β2w(x)=0.w^{\prime\prime}(x)+\beta^{2}w(x)=0.

Then by SHM solution w(x)=Acosβx+Bsinβxw(x)=A\cos\beta x+B\sin\beta x, so

y(x)=eαx(Acosβx+Bsinβx).y(x)=e^{\alpha x}(A\cos\beta x+B\sin\beta x).