Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.47 Proof (ii) Double real root

(ii) The auxiliary equation is

(s-p)2=s2-2ps+p2=0,(s-p)^{2}=s^{2}-2ps+p^{2}=0,

since we have a double root. Consider

w(x)=e-pxy(x)w(x)=e^{-px}y(x)

with

w(x)=e-pxy(x)-pe-pxy(x)w^{\prime}(x)=e^{-px}y^{\prime}(x)-pe^{-px}y(x)
w′′(x)=e-pxy′′(x)-2pe-pxy(x)+p2e-pxy(x)w^{\prime\prime}(x)=e^{-px}y^{\prime\prime}(x)-2pe^{-px}y^{\prime}(x)+p^{2}e^{% -px}y(x)

where

y′′(x)-2py(x)+p2y(x)=0,y^{\prime\prime}(x)-2py^{\prime}(x)+p^{2}y(x)=0,

so

w′′(x)=0.w^{\prime\prime}(x)=0.

Then w(x)=Ax+Bw(x)=Ax+B, so

y(x)=epx(Ax+B).y(x)=e^{px}(Ax+B).

Then

y(x)=pepx(Ax+B)+Aepxy^{\prime}(x)=pe^{px}(Ax+B)+Ae^{px}

so

y(0)=B, y(0)=pB+A.y(0)=B,\quad y^{\prime}(0)=pB+A.