Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.46 Proof (i) Distinct real roots

We have

ap2+bp+c=0,ap^{2}+bp+c=0,

so y1=epxy_{1}=e^{px} is a solution since

ay1′′+by1+cy1=(ap2+bp+c)epx=0;ay_{1}^{\prime\prime}+by_{1}^{\prime}+cy_{1}=(ap^{2}+bp+c)e^{px}=0;

likewise

aq2+bq+c=0,aq^{2}+bq+c=0,

so y2=eqxy_{2}=e^{qx} is a solution; then by linear superposition

y=Aepx+Beqxy=Ae^{px}+Be^{qx}

is a solution. Also,

y(x)=Apepx+Bqeqxy^{\prime}(x)=Ape^{px}+Bqe^{qx}

so

y(0)=A+B, y(0)=Ap+Bq.y(0)=A+B,\quad y^{\prime}(0)=Ap+Bq.