Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.49 Complex solutions

Note that the roots in case (iii) are α±iβ\alpha\pm i\beta, where by Euler’s formula

e(α+iβ)x=eαxeiβx=eαx(cosβx+isinβx),e^{(\alpha+i\beta)x}=e^{\alpha x}e^{i\beta x}=e^{\alpha x}(\cos\beta x+i\sin% \beta x),
e(α-iβ)x=eαxeiβx=eαx(cosβx-isinβx);e^{(\alpha-i\beta)x}=e^{\alpha x}e^{i\beta x}=e^{\alpha x}(\cos\beta x-i\sin% \beta x);

hence we can write the real solutions from case (iii) as

eαxcosβx=2-1(e(α+iβ)x+e(α-iβ)x),e^{\alpha x}\cos\beta x=2^{-1}\bigl(e^{(\alpha+i\beta)x}+e^{(\alpha-i\beta)x}% \bigr),
eαxsinβx=(2i)-1(e(α+iβ)x-e(α-iβ)x).e^{\alpha x}\sin\beta x=(2i)^{-1}\bigl(e^{(\alpha+i\beta)x}-e^{(\alpha-i\beta)% x}\bigr).

Note that eiβxe^{i\beta x} goes round the unit circle as xx increases, while eαxe^{\alpha x} is a real exponential functions such that eαxe^{\alpha x}\rightarrow\infty as xx\rightarrow\infty for α>0\alpha>0, eαx0e^{\alpha x}\rightarrow 0 as xx\rightarrow\infty for α<0\alpha<0.