Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.41 Trig functions in terms of zz

Trigonometric functions in terms of complex exponentials

(i) Let z=eiθz=e^{i\theta}. Then

2cosθ=z+1z,  2isinθ=z-1z.2\cos\theta=z+{{1}\over{z}},\qquad 2i\sin\theta=z-{{1}\over{z}}.

This is equivalent to

2cosθ=eiθ+e-iθ,  2isinθ=eiθ-e-iθ.2\cos\theta=e^{i\theta}+e^{-i\theta},\qquad 2i\sin\theta=e^{i\theta}-e^{-i% \theta}.