Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.40 Simplifying multiple angles in terms of trig powers

Use de Moivre’s Theorem directly by

cosnθ+isinnθ=einθ=(cosθ+isinθ)n\cos n\theta+i\sin n\theta=e^{in\theta}=(\cos\theta+i\sin\theta)^{n}

and expanding the RHS by the binomial theorem.

4.40 Example

To prove that

cos6θ=32cos6θ-48cos4θ+18cos2θ-1\cos 6\theta=32\cos^{6}\theta-48\cos^{4}\theta+18\cos^{2}\theta-1

and

sin6θ=6cos5θsinθ-20cos3θsin3θ+6cosθsin5θ.\sin 6\theta=6\cos^{5}\theta\sin\theta-20\cos^{3}\theta\sin^{3}\theta+6\cos% \theta\sin^{5}\theta.

Note that we need both cosθ\cos\theta and sinθ\sin\theta in the formula for sin6θ\sin 6\theta.