Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.42 Expressing trig powers in terms of multiple angles

In integration, it is easier to handle multiple angles than powers.

4.42.1 Example

To prove that

2cos2θ=cos2θ+1.2\cos^{2}\theta=\cos 2\theta+1.

4.42.2 Example

To prove that

cos6θ=132(cos6θ+6cos4θ+15cos2θ+10).\cos^{6}\theta={{1}\over{32}}\Bigl(\cos 6\theta+6\cos 4\theta+15\cos 2\theta+1% 0\Bigr).

This formula is useful for integrating cos6θ\cos^{6}\theta.