Home page for accesible maths Math 101 Chapter 1: Sequences and Series

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.26 Formulas for the binomial coefficients

The binomial coefficients can be written in terms of factorials

(n1)=n,{{n}\choose{1}}=n,
(n2)=n(n-1)2!,{{n}\choose{2}}={{n(n-1)}\over{2!}},
  \vdots\quad\quad\vdots
(nk)=n(n-1)(n-2)(n-k+1)12k=n!k!(n-k)!.{{n}\choose{k}}={{n(n-1)(n-2)\dots(n-k+1)}\over{1\cdot 2\cdot\dots\cdot k}}={{% n!}\over{k!(n-k)!}}. **

The formula

(αk)=α(α-1)(α-2)(α-k+1)12k.{{\alpha}\choose{k}}={{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-k+1)}\over{1% \cdot 2\cdot\dots\cdot k}}. **

(**)(**) for (αk){{\alpha}\choose{k}} makes sense for any real α\alpha and integer k1k\geq 1.