Home page for accesible maths Math 101 Chapter 1: Sequences and Series

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

1.25 Binomial by induction: induction step

Induction step: Assume the PnP_{n} is true and consider Pn+1P_{n+1}. We have

(1+X)n+1=(1+X)(1+X)n(1+X)^{n+1}=(1+X)(1+X)^{n}
=(1+X)(1+(n1)X+(n2)X2++(nn)Xn);=(1+X)\Bigl(1+{{n}\choose{1}}X+{{n}\choose{2}}X^{2}+\dots+{{n}\choose{n}}X^{n}% \Bigr);

this is a sum of powers of XX from 11 to Xn+1X^{n+1}, and the coefficient of Xk+1X^{k+1} is

(nk)+(nk+1)=(n+1k+1){{n}\choose{k}}+{{n}\choose{k+1}}={{n+1}\choose{k+1}}

by the recurrence relation; so

(1+X)n+1=1+(n+11)X+(n+12)X2++(n+1n+1)Xn+1,(1+X)^{n+1}=1+{{n+1}\choose{1}}X+{{n+1}\choose{2}}X^{2}+\dots+{{n+1}\choose{n+% 1}}X^{n+1},

hence result by induction.