MATH319 Slides
75 Integration
77 Differentiating Laplace transforms
76 Laplace transform of derivative
=
|
f
(
0
)
|
+
M
e
β
x
β
-
M
β
,
so
f
satisfies
(
E
)
. Now for
s
>
β
, we integrate by parts to get
∫
0
R
e
-
s
x
f
′
(
x
)
𝑑
x
=
[
e
-
s
x
f
(
x
)
]
0
R
+
s
∫
0
R
e
-
s
x
f
(
x
)
𝑑
x
=
e
-
s
R
f
(
R
)
-
f
(
0
)
+
s
∫
0
R
e
-
s
x
f
(
x
)
𝑑
x
so we let
R
→
∞
to get
∫
0
∞
e
-
s
x
f
′
(
x
)
𝑑
x
=
-
f
(
0
)
+
s
∫
0
∞
e
-
s
x
f
(
x
)
𝑑
x
.